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1 introduction

The SparCity project is funded by EuroHPC JU (the European High Performance Computing
Joint Undertaking) under the 2019 call of Extreme Scale Computing and Data Driven Technologies
for research and innovation actions. SparCity aims to create a supercomputing framework
that will provide efficient algorithms and coherent tools specifically designed for maximizing
the performance and energy efficiency of sparse computations on emerging High Performance
Computing (HPC) systems, while also opening up new usage areas for sparse computations in
data analytics and deep learning.

Sparse computations are commonly found at the heart of many important applications, but
at the same time it is challenging to achieve high performance when performing the sparse
computations. SparCity delivers a coherent collection of innovative algorithms and tools for
enabling both high efficiency of sparse computations on emerging hardware platforms. More
specifically, the objectives of the project are:

• to develop a comprehensive application and data characterization mechanism for sparse
computation based on the state-of-the-art analytical and machine-learning-based perfor-
mance and energy models,

• to develop advanced node-level static and dynamic code optimizations designed for mas-
sive and heterogeneous parallel architectures with complex memory hierarchy for sparse
computation,

• to devise topology-aware partitioning algorithms and communication optimizations to boost
the efficiency of system-level parallelism,

• to create digital SuperTwins of supercomputers to evaluate and simulate what-if hardware
scenarios,

• to demonstrate the effectiveness and usability of the SparCity framework by enhancing
the computing scale and energy efficiency of challenging real-life applications.

• to deliver a robust, well-supported and documented SparCity framework into the hands
of computational scientists, data analysts, and deep learning end-users from industry and
academia.

1.1 objectives of this deliverable

The objective of this deliverable is to provide an overview of the tools for performance, power
and energy monitoring on computing nodes equipped with different device architectures (such
as CPU, GPU, and Graphcore IPU), as well as on HPC systems that combine several computing
nodes. This step is important in order to define the most adequate platform-specific instru-
mentation frameworks to be used when assessing the application characteristics, determining
the execution bottlenecks and evaluating their ability to fully exploit the capabilities of a given
hardware. A special emphasis is paid on tools and frameworks for run-time computation and
communication monitoring, also based on hardware counters.

1.2 work performed

In this deliverable, the features of several tools for performance, power and energy monitoring on
different computing systems and devices, including multi-core CPUs, GPUs and Graphcore IPUs,
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are presented. The deliverable starts with the introduction of some of the existing performance
and monitoring events that can be used to profile and identify bottlenecks of sparse applications.
Next, a set of profiling tools based on hardware counters is also described, as these tools are
traditionally used to access the hardware counters in-built in current computing systems. Since
some of these counters can also be used for communication profiling and execution monitoring,
these type of tools is also targeted in this deliverable. Moreover, dynamic binary instrumenta-
tion approaches are also covered, as the information obtained from these methods can provide
additional information to complement the one obtained from hardware and software events.
Furthermore, frameworks for application analysis on Intel CPUs and GPUs, NVIDIA GPUs and
Graphcore IPUs are also addressed in this deliverable. Finally, a performance model of sparse
kernels based on cache simulation is presented.

1.3 deviations and counter measures

There was no deviation from the work plan.

1.4 resources

It is likely that in the course of the project, new profiling and instrumentation tools and frame-
works will be added to the core list provided in this document (and/or their set of features and
implementation will be improved).

2 performance and energy monitoring events

Due to the ability of sparse computations to reduce the storage and computational requirements
of real-world applications, these type of kernels have become increasingly relevant in several
scientific fields, such as physics, mathematics and machine learning.1 Sparse kernels rely on
data formats tailored to efficiently store the non-zero entries of the input data,2 which result
in irregular memory access patterns, leading to performance and efficiency degradation. To
tackle this issue, it is essential to correlate the application characteristics and the capabilities of
the underlying hardware when performing sparse applications, allowing to uncover the main
bottlenecks that affect their execution.

To this end, software and hardware events in-built in current operating and computing systems
can be used to to profile application execution on different devices, and to extract metrics useful
for the optimization of sparse applications. For example, for the Linux operating system, there are
several tools to monitor the different components that compose the operating system (see Figure 1).
These software events can provide insights regarding the utilization of different components in
the software and hardware stack, e.g., disk and network usages, which can become a bottleneck
when deploying sparse applications in large scale systems. Through performance monitoring
tools, additional information can be obtained from the hardware counters, which are contained
in the chip package of modern processors, thus providing insights on the utilization of different

1Shail Dave et al. “Hardware Acceleration of Sparse and Irregular Tensor Computations of ML Models: A Survey
and Insights”. Proceedings of the IEEE 109.10 (2021), pp. 1706–1752. doi: 10.1109/JPROC.2021.3098483; Thaha
Mohammed et al. “DIESEL: A novel deep learning-based tool for SpMV computations and solving sparse linear
equation systems”. The Journal of Supercomputing 77.6 (2021), pp. 6313–6355; Amuthan A. Ramabathiran and Prabhu
Ramachandran. “SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs”. Journal of
Computational Physics 445 (2021), p. 110600. issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2021.110600.
url: https://www.sciencedirect.com/science/article/pii/S0021999121004952.

2Yue Zhao et al. “Bridging the gap between deep learning and sparse matrix format selection”. Proceedings of the
23rd ACM SIGPLAN symposium on principles and practice of parallel programming. 2018, pp. 94–108.
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Figure 1 Linux components and specific tools to monitor each component.3

hardware components when performing sparse computations.

2.1 hardware counters

Modern multi-core CPUs support an extensive set of hardware counters in order to measure
events related to the performance and energy consumption of applications, e.g., Intel CPUs pro-
vide hundreds of different events that can be tacked.4 The counters provided by the performance
monitoring unit have a vast range of applicability, from measuring the amount of stalls that origi-
nate from accessing different hardware components, to the number of floating-point instructions
performed by an application, and cache misses that result from each memory level. Since sparse
computations are expected to be limited by the memory capabilities of computing devices, mainly
due to the irregular accesses, hardware counters related to the memory requests are especially
important to profile these workloads. Moreover, counters related to the floating point instructions
should also be considered to assess the utilization of compute units. This task can be performed
by using the counters presented in Table 1.

When evaluating the accesses to the memory hierarchy, the total amount of loads and stores,
and the misses of each level can provide useful insights regarding cache utilization and effi-
ciency of the memory accesses. While for measuring loads, stores and L1 data misses it is
only necessary to access a single counter, in the case of L2 cache data misses and L3 misses,
it is necessary to obtain data from two counters. In the case of L2 data misses, it is nec-
essary to compute the difference between all the memory requests from the core that refer-
ence a cache line in the last level cache (LLC REFERENCE) and the code reads that miss L2

cache (L2 RQSTS.CODE RD MISS). As for the LLC misses, we rely on the sum of two IMC
uncore events,5 which allow to measure all the access to the main memory, i.e., DRAM reads
(CAS COUNT RD) and DRAM writes (CAS COUNT WR). Other hardware counters provide

4R Intel. “and IA-32 Architectures. Software Developer’s Manual. Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and
3C”. Order Number (64).

5Intel Xeon Processor Scalable Memory Family. “Uncore Performance Monitoring Reference Manual”. Intel
Corporation, July (2017).
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measurements regarding the execution stalls that occur due to the misses in specific memory
levels (e.g. CYCLE ACTIVITY.STALLS L1D MISS) or regarding the cycles where there are out-
standing misses. Given that stalls result in low execution performance and efficiency, considering
the measurements obtained from these counters may allow to pinpoint the main execution bottle-
necks of sparse computations.

Table 1 Hardware counters for profiling sparse computations.

Metric Hardware Counters Description
Cycles CPU CLK UNHALTED.THREAD Counts the number of core cycles while the log-

ical processor is not in halt state.
Loads MEM INST RETIRED.ALL LOADS Counts the number of retired loads.
Stores MEM INST RETIRED.ALL STORES Counts the number of retired stores.
L1 Data Misses L1D.REPLACEMENT Counts the data line replacements that occur on

L1D cache.
L2 Data Misses LLC REFERENCE-

L2 RQSTS.CODE RD MISS
Number of data requests that miss L2D cache.
Corresponds to the difference between every
core request that references a cache line in LLC
and the L2 code misses.

LLC Misses CAS COUNT.RD+CAS COUNT.WR Sum between all DRAM reads and all DRAM
writes.

L1 Data Stalls CYC ACT†.STALLS L1D MISS Stalls that occur due to outstanding loads that
miss L1D cache.

L2 Stalls CYC ACT†.STALLS L2 MISS Stalls that occur due to outstanding loads that
miss L2 cache.

L3 Stalls CYC ACT†.STALLS L3 MISS Stalls that occur due to outstanding loads that
miss L3 cache.

Memory Stalls CYC ACT†.STALLS MEM ANY Stalls that occur due to outstanding loads in the
memory subsystem.

Cycles with misses on L1

Data
CYC ACT†.CYCLES L1D MISS Cycles while there are outstanding loads that

miss L1D cache.
Cycles with misses on L2 CYC ACT†.CYCLES L2 MISS Cycles while there are outstanding loads that

miss L2cache.
Cycles with misses on L3 CYC ACT†.CYCLES L3 MISS Cycles while there are outstanding loads that

miss L3 cache.
Cycles with outstanding
loads

CYC ACT†.CYCLES MEM ANY Cycles while there are outstanding loads in the
memory subsystem.

FP Scalar Double FP AI RET∗.SCALAR DOUBLE Double-precision scalar FP instructions.
FP Scalar Single FP AI RET∗.SCALAR SINGLE Single-precision scalar FP instructions.
FP 128-bit SIMD Double FP AI RET∗.128B PACKED DOUBLE Double-precision 128-bit packed FP instruc-

tions.
FP 128-bit SIMD Single FP AI RET∗.128B PACKED SINGLE Single-precision 128-bit packed FP instructions.
FP 256-bit SIMD Double FP AI RET∗.256B PACKED DOUBLE Double-precision 256-bit packed FP instruc-

tions.
FP 256-bit SIMD Single FP AI RET∗.256B PACKED SINGLE Single-precision 256-bit packed FP instructions.
FP 512-bit SIMD Double FP AI RET∗.512B PACKED DOUBLE Double-precision 512-bit packed FP instruc-

tions.
FP 512-bit SIMD Single FP AI RET∗.512B PACKED SINGLE Single-precision 512-bit packed FP instructions.
† – CYCLE ACTIVITY; * – FP ARITH INST RETIRED

To measure the energy consumption on Intel CPUs, it is necessary to rely on the RAPL
interface.6 As shown in Table 2, RAPL supports different energy domains, each with their specific
counter, that can provide different insights about the efficiency of sparse computations. The
power plane 0 (PP0) counter allows to measure the energy from the processor cores and LLC,
while the counter from the package domain encapsulates the entire processor package. While the

6Intel, “and IA-32 Architectures. Software Developer’s Manual. Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C”.
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package counter is available in all types of Intel processors, the PP0 domain is usually specific
to client platforms. The power plane 1 (PP1) domain targets the integrated processor graphics
in-built on the chip package of the client processors, while the DRAM domain considers the
energy consumption of the main memory. Finally, the platform energy counter considers the
energy of the cores, integrated graphic, system agent and other hardware components, and it is
only available in Skylake or more recent architectures. Its availability also depends on the BIOS
support. In case it is not supported in the tested hardware, the counter returns the value of zero.

Table 2 Counters supported by RAPL interface.

Metric Hardware Counters Description
Power Plane 0 Energy MSR PP0 ENERGY STATUS Energy of processor cores and LLC.
Package Energy MSR PKG ENERGY STATUS Energy of entire processor package.
Power Plane 1 Energy MSR PP1 ENERGY STATUS Energy of integrated processor graphics (only

client processors).
DRAM Energy MSR DRAM ENERGY STATUS Energy of DRAM (only server processors).
Platform Energy MSR PLATFORM ENERGY COUNTER Energy of entire platform (only if BIOS and ven-

dor hardware supports it).

2.2 software events

Along with hardware events, internal kernel information (vmstat, iostat, disk, network), and
process level metrics are also provided by the operating system, e.g., see Figure 1 (taken from7).
When a (sparse) application runs on a cluster, all of these components can resemble a bottleneck.
Hence, by monitoring this information along with the hardware events, spotting performance
issues of an application can be possible. Some of these metrics are provided in Table 3.

Table 3 Some selected metrics from kernel performance metric counters which could relate to sparse application
performance.

Source and Description Metric Metric Description

/proc
Kernel statistics

kernel.all.intr Context switches metric from /proc/stat
kernel.all.pressure.cpu.some.total Total time processes stalled for CPU resources
kernel.all.pressure.memory.some.total Total time processes stalled for memory re-

sources
kernel.all.pressure.memory.full.total Total time when all tasks stall on memory re-

sources
kernel.all.pressure.io.some.total Total time processes stalled for IO resources
kernel.percpu.interrupts.PMI Performance monitoring interrupts for each

core
kernel.percpu.interrupts.TRM Thermal event interrupts for each core
kernel.percpu.interrupts.line* Number of interrupts caused by each IO device

/proc/meminfo
System memory statistics

mem.util.used Used system memory
mem.util.free Free system memory
mem.util.directMap4k Amount of memory that is directly mapped in

4kB pages
mem.util.directMap2M Amount of memory that is directly mapped in

2MB pages
mem.util.directMap1G Amount of memory that is directly mapped in

1GB pages
swap.pagesin Pages read from swap devices due to demand

for physical memory

7Brendan Gregg. 2021. url: https://brendangregg.com/linuxperf.html.
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swap.pagesout Pages written to swap devices due to demand
for physical memory

/proc/meminfo
NUMA statistics

mem.numa.util.free Per-node free memory
mem.numa.util.used Per-node used memory
mem.numa.alloc.hit Per-node count of times a task wanted alloc on

local node and succeeded
mem.numa.alloc.miss Per-node count of times a task wanted alloc on

local node but got another node
mem.numa.alloc.local node Per-node count of times a process ran on this

node and got memory on this node
mem.numa.alloc.other node Per-node count of times a process ran on this

node and got memory on another node
/proc/vmstat

Virtual memory statistics
mv†.kswapd low wmark hit quickly Count of times low watermark reached quickly
mv†.kswapd high wmark hit quickly Count of times high watermark reached quickly

/proc/net/dev
Network interface statistics

network.interface.in.bytes Network recv read bytes per network interface
network.interface.out.bytes Network send bytes per network interface

/proc/diskstats
Disk statistics

disk.dev.read Per-disk read operations
disk.dev.write Per-disk write operations
disk.dev.read merge Per-disk count of merged read requests
disk.dev.write merge Per-disk count of merged write requests

/proc/<pid>/*
Per process statistics

proc.psinfo.ngid NUMA group identifier
proc.psinfo.threads Number of threads
proc.psinfo.nvctxsw Number of non-voluntary context switches
proc.psinfo.processor Last CPU the process was running on
proc.psinfo.cmaj flt Count of page faults other than reclaims of all

exited children
proc.psinfo.maj flt Count of page faults other than reclaims
proc.io.wchar write(), writev() and sendfile() send bytes
proc.io.rchar read(), readv() and sendfile() receive bytes

† – mem.vmstat

3 profiling tools based on hardware counters

The access to the hardware counters and the energy counters supported by the RAPL interface
on Intel devices, it is usually required to have privileged access, thus they cannot be accessed
from user space. To overcome this issue and to to ease the adoption of counters for profiling
applications and modeling computing systems, monitoring tools, such as, Perf,8 PAPI,9 and
LIKWID,10 can be used to easily configure and access the counters. All these tools allow to access
both the hardware counters for performance monitoring and the RAPL interface when targeting
the energy consumption of a system.

3.1 perf: performance analysis tools for linux

Perf is included in the Linux kernel and relies on a command line interface to configure the
hardware counters and performing the measurements. This tool not only supports hardware
counters, but also tracepoints, kprobes and uprobes for dynamic tracing. To simply profile the
entire execution of an application, perf stat command must be used. Moreover, the event accounts
can also be recorded through the command perf record, which together with the commands perf

8Arnaldo Carvalho De Melo. “The new linux’perf’tools”. Slides from Linux Kongress. Vol. 18. 2010, pp. 1–42.
9Dan Terpstra et al. “Collecting performance data with PAPI-C”. Tools for High Performance Computing 2009. Springer,

2010, pp. 157–173.
10J. Treibig, G. Hager, and G. Wellein. “LIKWID: A lightweight performance-oriented tool suite for x86 multicore

environments”. Proceedings of PSTI2010, the First International Workshop on Parallel Software Tools and Tool Infrastructures.
2010.
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report and perf annotate allow to breakdown the measured events by process/function and/or
to annotate the application source code with the event counts. This allows to detect which
application kernels should be the focus for optimization. Besides these features, perf also allows
to print the sampled functions in real time (perf top), as well as to perform different multi-threaded
micro-benchmarks to evalute the capabilities of CPU devices (perf bench).

3.2 performance application programming interface (papi)
PAPI profiles applications or specific regions of interest by manually inserting functions/mark-
ers in the application code. When using PAPI, the first step is to initialize the PAPI library
(PAPI library init). When targeting multi-thread applications, it is also necessary to initialize the
PAPI interface for multiple threads (PAPI thread init). After initializing PAPI, the second step is to
select the counters to be read by each thread/core. This needs to be explicitly performed by the
programmer in the application code, through the functions PAPI create eventset and PAPI add event
to create a event set and add counters to it. The list of events supported by the computing sys-
tem can be obtained from the executable files papi avail and/or papi native avail. After adding
the events to measure to the event set, the counting of the hardware counters must be started
with PAPI start. After starting the counting, to profile specific application kernels, PAPI read
calls can be inserted around the region of interest to read the current values of the hardware
counters. Finally, at the end of the application code, the counting of the hardware counters
must be stopped (PAPI stop) and the envent set cleaned (PAPI cleanup eventset) and destroyed
(PAPI destroy eventset).

3.3 likwid performance tools

LIKWID is another alternative to Perf and PAPI. Similar to Perf, it allows to profile the entire
application execution by using a command line interface (likwid-perfctr). This interface is also
responsible to select and configure the hardware counters. However, LIKWID also includes a
mechanism to profile specific regions of the application, by relying on the marker API. The first
step is to initialize the LIKWID marker interface (LIKWID MARKER INIT). In the case of multi-
thread applications, it is also necessary to call the function LIKWID MARKER THREADINIT.
After this initialization step, the LIKWID MARKER START and LIKWID MARKER STOP must
be placed before and after the region of interest. To reduce the overhead when performing the
measurements, the user can attribute names to the different regions and register them before
starting the measurements (LIKWID MARKER REGISTER). Finally, at the end of the application
the LIKWID marker interface must be closed (LIKWID MARKER CLOSE). With this approach,
the values obtained for each hardware event and in each core are presented in a command line
output.

4 communication profiling and monitoring tools

Communication is one of the main factor that prevents parallel applications from scaling to large
number of cores. In the context of multi-threaded applications, data movement or communication
takes place in forms of cache line transfers across multiple cores within or across sockets. Because
of the criticality of communication in the performance of an application, in the SparCity project,
we leverage communication monitoring tools developed by the KU partner. These tools are
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namely ComDetective,11 ReuseTracker12 and ComScribe.13 All these three tools are publicly
available on the ParCoreLab git repository: https://github.com/ParCoreLab/ParCoreTools

4.1 comdetective: a communication monitoring tool

Inter-thread data movement is a vital performance indicator in multi-core systems. To detect
inter-thread communications in multi-threaded codes with low time and memory overheads,
the KU partner previously developed ComDetective,14 a tool that captures inter-thread commu-
nications in the forms of communication matrices. The tool employs hardware performance
counters (PMUs) to sample memory-access events and uses hardware debug registers to capture
communicating pairs of threads. A PMU is a special on-chip hardware in each CPU core that can
be used to monitor hardware events, such as memory loads, stores etc, or software events like
page faults, while a debug register is a special register that can be programmed to monitor any
memory address and trap the next access to that memory address.

ComDetective works by sampling memory accesses in each application thread using PMUs
and publishing the sampled memory addresses on a global data structure called BulletinBoard. In
addition to publishing sampled addresses to BulletinBoard, each sampling thread also attempts
to detect inter-thread communication by comparing the cache lines of its sampled addresses with
the cache lines of the addresses published on BulletinBoard. If there is a matching cache line, a
communication is detected, otherwise, one address in BulletinBoard posted by another thread is
randomly selected and its cache line is monitored by the debug registers in the currently sampling
thread to trap a communication.

In addition to detecting communications, ComDetective also differentiates the communica-
tions into true sharing and false sharing. This can be useful for the application users if they
would like to eliminate or reduce false sharing in their codes by making data structure changes.
Furthermore, it also attributes the detected communications to their locations in source code and
the data objects involved in the communications.

This tool works in both Intel and AMD architectures. To ensure precision of event sampling,
it leverages Processor Event-Based Sampling (PEBS)15 in Intel and Instruction-Based Sampling
(IBS)16 in AMD. The group’s work on extending the tool to ARM-based multicore architectures is
in progress.

The KU partner verified the accuracy of ComDetective using several microbenchmarks17 that
have known ground truths. These benchmarks were designed to have known ground truths
for total number of communications, ratio of false sharing to true sharing, and distribution
of communication volume across communicating thread pairs. The communications captured

11Muhammad Aditya Sasongko et al. “ComDetective: A Lightweight Communication Detection Tool for Threads”.
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Denver,
Colorado: Association for Computing Machinery, 2019. doi: 10.1145/3295500.3356214. url: https://doi.org/10.
1145/3295500.3356214.

12Muhammad Aditya Sasongko et al. “ReuseTracker: Fast Yet Accurate Multicore Reuse Distance Analyzer”. ACM
Trans. Archit. Code Optim. 19.1 (2021). issn: 1544-3566. doi: 10.1145/3484199. url: https://doi.org/10.1145/
3484199.

13Palwisha Akhtar et al. “ComScribe: Identifying Intra-node GPU Communication”. 2021. doi: 10.1007/978-3-
030-71058-3_10.

14Sasongko et al., “ComDetective: A Lightweight Communication Detection Tool for Threads”.
15Intel. Intel Microarchitecture Codename Nehalem Performance Monitoring Unit Programming Guide. https://software.

intel.com/sites/default/files/m/5/2/c/f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf. 2010.
16Paul J. Drongowski. Instruction-Based Sampling: A New Performance Analysis Technique for AMD Family 10h Processors.

https://pdfs.semanticscholar.org/5219/4b43b8385ce39b2b08ecd409c753e0efafe5.pdf. 2007.
17Sasongko et al., “ComDetective: A Lightweight Communication Detection Tool for Threads”.
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Figure 2 Communication matrices of LULESH (Left to Right: All, True and False Sharing). Darker color
indicates more communication.

by ComDetective from these benchmarks are close to these ground truths. Moreover, the KU
partner also evaluated the time and memory overheads of ComDetective by running it on twelve
PARSEC18 and six CORAL benchmarks19 20 21 22 23 24 25 in an Intel Broadwell machine. Figure 2

shows the communication matrices from LULESH, one of the CORAL benchmarks. Its average
overheads are 1.30× for runtime and 1.27× for memory overheads under 500K sampling interval,
which are much lower than the overheads of cycle-accurate simulators26 27 28 and prior-art code
instrumentation tools29 30.31

4.2 reusetracker: a reuse distance analysis tool

Data locality is another important performance indicator in multi-core machines with multi-level
caches. One widely used metric that measures data locality is reuse distance, which calculates
the number of unique memory locations accessed between two memory accesses to a particular

18C. Bienia et al. “The PARSEC benchmark suite: Characterization and architectural implications”. 2008 International
Conference on Parallel Architectures and Compilation Techniques (PACT). 2008, pp. 72–81.

19AMG. Parallel Algebraic Multigrid Solver. https://github.com/LLNL/AMG. 2017.
20Ulrike Meier Yang. “Parallel Algebraic Multigrid Methods High Performance Preconditioner”. Numerical Solution

of Partial Differential Equations on Parallel Computers, LNCS 51 (2006), pp. 209–233.
21Quicksilver. A proxy app for the Monte Carlo Transport Code, Mercury. https://github.com/LLNL/Quicksilver.
22PENNANT. Unstructured mesh hydrodynamics for advanced architectures. https://github.com/lanl/PENNANT. 2016.
23miniFE. MiniFE Finite Element Mini-Application. https://github.com/Mantevo/miniFE.
24VPIC. Vector Particle-In-Cell (VPIC) Project. https://github.com/lanl/vpic.
25LULESH 2.0. Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH). https://github.com/

LLNL/LULESH.
26Nick Barrow-Williams, Christian Fensch, and Simon Moore. “A communication characterisation of Splash-2 and

Parsec”. IEEE International Symposium on Workload Characterization, 2009. IISWC 2009. 2009.
27P.S. Magnusson et al. “Simics: A full system simulation platform”. Computer 35.2 (2002), pp. 50–58.
28Eduardo Henrique Molina da Cruz et al. “Using Memory Access Traces to Map Threads and Data on Hierarchical

Multi-core Platforms”. 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW). 2011.

29Matthias Diener et al. “Characterizing communication and page usage of parallel applications for thread and data
mapping”. Performance Evaluation 88-89 (2015), pp. 18–36.

30Arya Mazaheri, Felix Wolf, and Ali Jannesari. “Characterizing Loop-Level Communication Patterns in Shared
Memory Applications”. Proceedings of the 2015 44th International Conference on Parallel Processing. Beijing, China, 2015.
doi: 10.1109/ICPP.2015.85.

31Arya Mazaheri, Felix Wolf, and Ali Jannesari. “Unveiling Thread Communication Bottlenecks Using Hardware-
Independent Metrics”. Proceedings of the 47th International Conference on Parallel Processing. Eugene, OR, USA: ACM,
2018, 6:1–6:10. doi: 10.1145/3225058.3225142. url: http://doi.acm.org/10.1145/3225058.3225142.
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memory location. To profile reuse distance in multi-threaded code with low runtime and memory
overheads, the KU partner developed ReuseTracker.32 This profiling tool leverages PMUs to sam-
ple memory accesses and uses debug registers to detect either a reuse or a cache line invalidation
of the sampled memory location. ReuseTracker works in Intel by leveraging PEBS and in AMD
by leveraging IBS. Similar to ComDetective, its extension to ARM-based multicore architectures
is in progress.

ReuseTracker employs two different algorithms that profile reuse distance in private caches
and shared caches, respectively. To profile reuse distance in private caches, each thread that
encounters a PMU sample arms a debug register in every CPU core in the machine. If the next
debug register trap occurs in the same CPU core as the PMU sample, a reuse in private cache is
detected, otherwise, if the next trap happens in another core, a cache line invalidation at private
cache level is detected. When a reuse is detected, the number of memory accesses between the
PMU sample and the debug register trap is recorded into a time reuse distance histogram, which
is then converted into stack reuse distance histogram using the method in.33 In the algorithm
that profiles reuse distance in shared caches, each thread that faces a PMU sample arms a debug
register in every other core in the machine. A reuse in the same shared cache is detected if the
next trap happens in another core that shares the same socket, and a cache line invalidation at
shared cache level is detected when the next trap occurs in another core located in another socket.
When a reuse at shared cache level is detected, the number of memory accesses in all cores that
share the same socket is recorded in the time reuse distance histogram.

To evaluate the accuracy of ReuseTracker, the KU partner developed a microbenchmark that
can be configured to generate a variety of reuse distance patterns. The private cache profiling
algorithm has been evaluated on this microbenchmark, and its accuracy is 92% in an Intel Skylake
machine under 100K sampling interval. The overheads of this tool have also been evaluated by
running it on ten PARSEC benchmarks with 2.9× runtime and 2.8× memory overheads under
the same sampling interval, which are much lower than the overheads of the other open source
reuse distance analysis tools.34

4.3 comscribe: inter-gpu communication detection tool

Communication monitoring among GPUs can help reason about scalability issues and perfor-
mance divergence between different implementations of the same application. ComScribe35 is a
tool that can identify communication among all GPU-GPU and CPU-GPU pairs in a single-node
multi-GPU system. It can monitor data movement induced by both Peer-to-Peer (P2P) primitives
of CUDA and collective communication primitives of NVIDIA’s Collective Communication Li-
brary (NCCL). It employs the NVIDIA’s profiling tool nvprof and Unix dynamic linker utility to
monitor P2P communication and collective communication respectively to gather the necessary
information. Then, the collected information is processed to quantify communication among
GPUs and generate the communication matrices. In the SparCity project, we plan to leverage
this tool to monitor inter-GPU communication in multi-GPU applications with this tool.

32Sasongko et al., “ReuseTracker: Fast Yet Accurate Multicore Reuse Distance Analyzer”.
33Xipeng Shen, Jonathan Shaw, and Brian Meeker. “Accurate Approximation of Locality from Time Distance

Histograms”. 2006.
34Xiaoya Xiang et al. “HOTL: A Higher Order Theory of Locality”. SIGARCH Comput. Archit. News 41.1 (2013),

pp. 343–356. issn: 0163-5964. doi: 10.1145/2490301.2451153. url: https://doi.org/10.1145/2490301.2451153;
dcompiler/loca: Program locality analysis tools. https://github.com/dcompiler/loca.

35Akhtar et al., “ComScribe: Identifying Intra-node GPU Communication”.
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5 system-level monitoring tools

In order to systematically collect and store information from performance metric sources, several
monitoring tools are developed and widely used in the literature. These tools aim to provide a
wider picture on the system performance via monitoring multiple components of and building
relations among them. These systems are used to facilitate intelligent job placement, run-time
workload partitioning/adaptation and HPC hardware procurement planning.36 Some of these
tools are: LDMS,37 Performance Co-Pilot,38 Ganglia,39 Nagios, HPC-Toolkit40 and PerfAugur.41

Among them Ganglia is proven to be scalable up to 2000 nodes but is used for general system
monitoring, requires considerable number of installation dependencies, targets larger collection
intervals (10s of seconds to 10s of minutes) and uses an aging tool for storage. Nagios also targets
larger collection intervals (10s of seconds to 10s of minutes) and mainly used for failure alerts.
PerfAugur is used to trace the cause of a system anomaly by finding common attributes that
predicate an anomaly.42 HPCToolkit is a suite of tools which can provide accurate measurements
of program performance on a wide variety of systems from single host computers to large
clusters. However it involves a binary analysis and re-compilation of the target code. LDMS
and Performance Co-Pilot are metric collection, transport and storage systems which can be
configured to sample every performance metric counter on hardware and kernel including RAPL,
PAPI and perf interfaces. Moreover they support frequent and variable sampling rate on these
performance metrics with negligible overhead and without requirement of recompile or source
code instrumentation. This enables real time monitoring of HPC systems in cluster level, node
level and process level in order to provide multiple-aspect insight of application performance.

5.1 lightweight distributed metric service (ldms)
LDMS is part of OVIS, a suite of HPC monitoring, analysis and feedback tools which is jointly
developed by Sandia National Laboratories and Open Grid Computing. LDMS is based on
daemons called ldmsd which can run on either sampler or aggregator modes. A sampler ldmsd
daemon is created by running and configuring sampling plugins which sample PMUs. Each
sampling plugin combines a specific set of data into a single metric set. An aggregator ldmsd

daemon is created by running and ldsmd and configuring aggregator plugings. Each aggregator
collect metric sets from samplers and/or other aggregators. Higher level aggregators can listen
many lower level aggregators, aggregate and streams data into storage. LDMS can store sampled
performance data on CSV files, D-SOS and InfluxDB. Increasing with number of sampled metrics,
LDMS causes very little overhead on the system performance. It causes ≈ 0.01% CPU utilization,

36James M. Brandt, Thomas Tucker, and Ann C. Gentile. Lightweight Distributed Metric Service (LDMS): Run-time
Resource Utilization Monitoring. English. Tech. rep. SAND2013-6521C. Sandia National Lab. (SNL-CA), Livermore, CA
(United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States), 2013. url: https://www.osti.
gov/biblio/1106397 (visited on 09/27/2021).

37Anthony Michael Agelastos et al. The Lightweight Distributed Metric Service: A Scalable Infrastructure for Continuous
Monitoring of Large Scale Computing Systems and Applications. English. Tech. rep. SAND2014-19868C. Sandia National
Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States),
2014. doi: 10.1109/SC.2014.18. url: https://www.osti.gov/biblio/1315267 (visited on 09/27/2021).

38Red-Hat. url: https://pcp.io/.
39Ganglia. Ganglia monitoring system. url: http://ganglia.sourceforge.net/.
40L. Adhianto et al. “HPCTOOLKIT: Tools for Performance Analysis of Optimized Parallel Programs

Http://Hpctoolkit.Org”. Concurr. Comput.: Pract. Exper. 22.6 (2010), pp. 685–701. issn: 1532-0626.
41Sudip Roy et al. “PerfAugur: Robust diagnostics for performance anomalies in cloud services”. 2015 IEEE 31st

International Conference on Data Engineering. 2015, pp. 1167–1178. doi: 10.1109/ICDE.2015.7113365.
42Agelastos et al., The Lightweight Distributed Metric Service.
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< 2MB memory, < 4MB filesystem and 4KB network overhead for ≈ 200 metrics @1 second
intervals.43

Although it has been widely used in the literature, and it works well under certain circum-
stances, LDMS is mostly used by a strictly related group, lacks documentation and still under
development. Therefore it’s hard to deploy, develop and maintain.

5.2 performance co-pilot

Performance Co-Pilot, which was initially released at 1995 by SCI and currently being developed
by Red-Hat is a system performance analysis toolkit. PCP contains two types of components:
PCP collectors and PCP monitors. PCP collectors are responsible for collecting and extracting
performance data from various sources. This sources could be PMCs, PMUs or application
performance logs. PCP collectors consists of two components; Performance Metrics Domain Agent
(PMDA) and Performance Metric Collector Daemon (PMCD). PMDAs connects to performance
sources and sample their values, then reports these values to PMCD. There currently 75 PMDAs
available and apart from existing PMDAs, new PMDAs could be developed to connect any wanted
performance metrics source using PMAPI library. To be able to report metrics from a host machine,
there must be a PMCD which listen and control all PMDAs and answer requests of monitoring
applications. Monitoring tools are used to display, manipulate and store performance metrics
extracted from PMCDs. PMCDs can collect performance metrics from remote hosts or answer to
remote monitoring tools in a distributed setting. Some of the PCP monitoring tools are; PMIE, an
inference engine which could be used to automate system management tasks via predicate-action
rules. PMLOGGER, archive manager which enables subsets of collected performance metrics to
be replayed. PMCHART, a visualization tool which can generate on the fly charts from collected
metrics. PMREP, a performance metrics reporter with highly customizable output format. PCP
can export collected metrics to several databases such as; Elasticsearch, Graphite, InfluxDB, Redis
and Apache Spark.

5.3 grafana: open source visualization tool

Grafana is an open source visualization tool which provides dynamic dashboards, ad-hoc queries
and alerting functions on time-series data. Since it’s initial release at 2014, Grafana quickly
become industry standard and reached 10M+ global users recently. Due to it’s massive userbase,
Grafana provides support for every popular database and provides a wide variety of visualization
methods. Due to it’s strong recognition and flexibility, Grafana is chosen as Digital SuperTwin
front-end interface during development in order to prove usability of design concepts for Digital
SuperTwin’s own interface.

5.4 measurement overhead

The overhead for a default configuration of Performance Co-Pilot is reported in Table 4. Since
the default configurations of monitoring tools focused on overall system health and component
state, main effort is put on reconfiguration of sampler processes to sample performance centric
metricsets and development of custom samplers. On top of that, to be able to implement and test
customized solutions for monitoring and to report reproducible results, a freely available research
medium is required. To this end, virtual clusters using docker containers as compute node, which
can perform MPI communications and managed by SLURM is realized. But since this framework
is still under development, results acquired from this setting, along with the custom samplers and

43Agelastos et al., The Lightweight Distributed Metric Service.
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Figure 3 An example Grafana dashboard showing performance metrics collected by PCP and indexed with
InfluxDB on a single host. Exhibiting node-level monitoring usage.

Figure 4 An example Grafana dashboard showing statistics for processes used for creating Table 3. Exhibiting
process-level monitoring usage.

implementation of monitoring tool on physical clusters will be reported at the next deliverable.
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Sampler / Reporter pcp2influxdb pmcd pmdaroot proc pmda xfs pmda linux pmda perfevent pmda
CPU Percentage 19.1 0.1 0.1 7.3 0.09 1.6 0.1
Resident Set Size (MBs) 46.7 4.4 3.8 6.3 3.6 5.7 7.6

Table 4 Overhead of Performance Co-Pilot agents on a single host machine with default installation. Among
2857 metrics collected by samplers, 107 are reported to InfluxDB. Average CPU usage and RSS of proccesses
for one hour is reported.

6 dynamic instrumentation and cache

partitioning tools

Hardware counters are extremely useful to extract metrics to understand the behavior of appli-
cations in current computing systems. However, they do not encapsulate all the information
about the specifics of an application. For example, while the hardware counters on Intel CPUs
allow to count the number of retired loads and stores, they do not provide information related
to the size each memory access. Similarly, while there are counters for floating-point operations,
no information can be inferred for integer operations. Both these specifics can be crucial when
understanding the bottlenecks of sparse computations, as well as to achieve accurate application
characterization.44 To overcome these issues, dynamic instruction tools can be used to dynami-
cally evaluate the instructions executed by the application to obtain profile regarding the type of
instructions performed.

6.1 intel sde, pin and gtpin

For Intel CPUs, one of the most known tools is the Intel Software Development Emulator (SDE).45

Intel SDE is a emulation tool built on top of Intel Pin,46 which allows to debug programs using
instructions before their release. Intel SDE also contains a histogram tool, which can be used to
dynamically count the instructions executed by an application. This can be divided according to
their ISA extension, type, data size, etc. Since the instrumentation is performed while Intel SDE
discovers the execution path of the application, the results obtained are more reliable than the
ones obtained by statically analyse the assembly code. Intel SDE also supports a marker API to
only obtain the dynamic trace of specific applications kernels, by placing the SSC MARK macros
around the code. Given that Intel SDE is able to categorize memory and compute instructions in
different categories, e.g., according to their size and data type, this tool can also be fundamental
when applying specific modeling approaches, such as roofline modeling methodologies.

The binary instrumentation can also be performed on Intel GPUs by relying on GTPin,47 an
adaptation of the Intel Pin to Intel GPU architectures. GTPin features a binary instrumentation
engine for the execution units in Intel GPUs, a set of sample tools and an API for developing
additional analysis tools. GTPin instrumentation can be used to gather data for workloads in
compute and graphics applications, enabling fast analysis of code running in the GPU. GTPin
capabilities are used in various profiling tools, such as Intel Profiling Tools Interface for GPU,48

44Diogo Marques et al. “Application-driven cache-aware roofline model”. Future Generation Computer Systems 107

(2020), pp. 257–273.
45Moshe Bach et al. “Analyzing parallel programs with pin”. Computer 43.3 (2010), pp. 34–41.
46Chi-Keung Luk et al. “Pin: building customized program analysis tools with dynamic instrumentation”. Acm

sigplan notices 40.6 (2005), pp. 190–200.
47Intel Corporation. GTPin. https://software.intel.com/sites/landingpage/gtpin/index.html. [Online;

visited March-2022].
48Intel Corporation. Profiling Tools Interfaces for GPU (PTI for GPU). https://github.com/intel/pti-gpu. [Online;

visited March-2022].
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Intel Advisor and Intel VTune. It is supported in both integrated and discrete Intel GPUs.

6.2 reuse distance analysis and cache partitioning for the

arm a64fx cpu

Due to high costs incurred when accessing main memory, data locality is an important consid-
eration when optimizing numerical kernels. Caches keep small amounts of data close to the
processor’s compute units, and thus have the potential to speed up computation and reduce
energy consumption. Programmers may exploit caches by employing optimization techniques
such as blocking or tiling. To ease programmability, the cache is automatically managed by hard-
ware and its contents are under implicit but not explicit control of a programmer. The implicit
control a programmer may enact is imprecise and has limitations, because CPU hardware is
complex, several subsystems may be interacting unpredictably and the precise functionality of
these subsystems is often not documented.

Cache partitioning is an approach to give programmers significantly more explicit control over
cache functionality. It allows the available cache space to be divided into a configurable number
of partitions. Data structures (corresponding to one or more address ranges) may be assigned to
a dedicated partition. This is especially promising in situations where data is repeatedly accessed
and should be retained in cache but is evicted by intervening unrelated data accesses due to the
cache’s eviction policy (typically a variant of LRU - least recently used). In a partitioned cache
each partition is managed with a separate eviction policy and by assigning the reusable data its
own partition it can be shielded from evection by the unrelated data accesses.

A feature for cache partitioning as described above is not available in most mainstream CPUs
but has been available in the SPARC64VIIIfx CPU49 developed by Fujitsu for the K computer
system and has also been introduced in the Fujitsu A64FX CPU powering the Fugaku system (#1

in the Top 500 list as of November 2021). In the A64FX CPU the feature is called instruction-based
way partitioning and referred to as the sector cache. It works by dividing the “ways” dimension
of the 4-way set-associative L1 data cache or 16-way set-associative L2 cache into two or more
sectors. An extension to the Fujitsu compiler suite can be used to specify which data structures
should be assigned to a dedicated sector.

While a potentially powerful feature, unless a developer knows an application’s data reuse
pattern in great detail, it will be a challenge to determine whether cache partitioning may be a
profitable option and which data structures to isolate in dedicated sectors. To help developers with
these questions, a tool was developed at LMU Munich50 which can be used to derive hints about
a sector cache configuration and identify candidate data structures to assign a dedicated sector.
The tool works by monitoring and analysing the accessed memory locations during execution to
compute reuse distance histograms under various hypothetical partitioning scenarios.

The tool is based on dynamic binary instrumentation using Intel Pin51 and captures memory
accesses during execution. Based on the stream of accessed memory locations, reuse distance
histograms are computed. The reuse distance of a memory access for a particular location is the
number of distinct memory locations referenced since the last access to this same location. The
reuse distances can then be aggregated per data structure into reuse distance histograms, and
these histograms can be used to derive hints about which data structures may benefit from a
placement in a dedicated sector. If the reuse distances of a data structure are predominantely

49Toshio Yoshida et al. “SPARC64 VIIIfx: CPU for the K computer”. Fujitsu Sci. Tech. J 48.3 (2012), pp. 274–279.
50Sergej Breiter. “Evaluating Sector Caches in High-Performance Computing”. Master Thesis. Ludwig-Maximilians-

Universität München, 2022.
51Luk et al., “Pin: building customized program analysis tools with dynamic instrumentation”.
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Figure 5 Reuse distance histograms of the DMTVM data structure.

Figure 6 The tool’s output of the sector cache configuration for DMTVM. The number of L1D cache misses
can be reduced significantly by isolating m in the function dmtvm in a partition with quota of one cache way.

larger than the capacity of a cache, LRU implies that data is evicted just before being reused. By
using two partitions, the reuse distance histogram is split into two histograms in which the main
amount of accesses may now be smaller than the partition’s size, thereby providing a benefit.

As an example for how the tool can be used, Fig.5 shows the output for the simple dmtvm

(Dense Matrix Transposed Vector Multiplication) benchmark application. The source code consists
of the main function, the init function and the dmtvm kernel itself, which is shown in Fig 7. The
multiplication operates on the input matrix m, the multiplicand vector b and stores the result in
the vector x. x is reused in every row of the multiplication, m is streamed and never reused and
b can be ignored regarding memory accesses, because only one element of b is loaded per row.
m interferes with the reuse of x and doubles the reuse distances of accesses to x, because equal
amounts of data from x and m are required during the calculation of each row.

In the reuse distance histograms shown in Fig. 5, the number of the double precision floating-
point matrix rows is set to 500 and the number of columns is set to 5000. This leads to the sizes
of 4KB for b, 40KB for x and 20MB for m. Thus, x can fit in 3 ways of the L1D cache (total size
64 KB) and m does not fit in the L2 cache (total size 8 MB). In the main function (third row of
histograms), accesses to the global address space (first column) have only reuse distances higher
than the L1D capacity. The accesses with reuse distance 8 are attributable to the init function
(second row) and are compulsory misses. Accesses with other reuse distances occur during the
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#pragma s c a c h e i s o l a t e w a y L1=1

#pragma s c a c h e i s o l a t e a s s i g n m
#pragma omp f o r

f o r ( i n t i = 0 ; i < nrow ; ++ i ) {
f o r ( i n t j = 0 ; j < ncol ; ++ j ) {

x [ j ] += m[ i * ncol + j ] * b [ i ] ;
}}

Figure 7 Dense Matrix Transposed Vector Multiplication (dmtvm) source code and example sector cache
configuration using Fujitsu compiler directives, called Optimization Control Lines (OCLs).

multiplication (first row). Isolating b (second column) does not change the reuse distances and
can be omitted as option. Isolating x (third column) shifts the reuse distances of accesses to x

(blue) below the L1D capacity. Other accesses (orange) are not negatively affected. This is exactly
as expected, because x is reused frequently and 40KB large. The isolation of m (fourth column)
shifts the reuse distances of accesses to its complementary data structure below the L1D cache
capacity.

The output of the analysis is shown in Fig. 6. The optimal sector cache configuration is the
isolation of m in the smallest possible sector of each cache level which halves the L1D misses
when applied. This is again as expected, because half of the accesses are made to x which can be
reused when it is isolated from the interfering accesses to m. Isolating m in a small sector slightly
decreases the cache misses compared to isolating x in a sector of appropriate size, because it has
a minor positive affect on the reuse of b.

The predicted configuration has been tested on a Fujitsu A64FX system installed at the Leibniz
Supercomputing Center (LRZ) and the measurements of the L1D and L2 misses on the A64FX
CPU have been found to be in line with the predictions of the tool. The measured L2 misses in
the dmtvm function remained unchanged at around 80000 when the sector cache was applied.
On the other hand, the measured L1D misses went down from 142000 to 81000. Similar results
can be observed for the L2 cache partitioning.

7 vendor-specific frameworks for application

analysis

Another approach to evaluate the execution of applications in current computing systems is
the utilization of frameworks provided by the different vendors. For example, for Intel CPUs
and GPUs, Intel Advisor can be used to obtain metrics related to the instruction mix, memory
accesses and execution time, together with the Cache-Aware Roofline Model,52 which is proposed
by the INESC-ID partner and fully automated in this framework. Intel Vtune also encapsulates
the Top-Down method,53 which provides an extensive evaluation of the application execution
to identify which hardware resources are limiting application performance. For NVIDIA GPUs,
similar information can be obtained from the NVIDIA Visual Profile,54 while the PopVision and
Poplar tools can be used to analyze applications running in Graphcore IPU systems.

52Marques et al., “Application-driven cache-aware roofline model”.
53Ahmad Yasin. “A top-down method for performance analysis and counters architecture”. 2014 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE. 2014, pp. 35–44.
54NVIDIA Corporation. Profiler User’s Guide. NVIDIA Corporation. 2022. url: https://docs.nvidia.com/cuda/

profiler-users-guide/index.html.
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7.1 intel vtune

Intel VTune Profiler is a framework developed by Intel that provides different methods for
application analysis on CPUs, GPUs and FPGAs. With the information provided by Intel VTune,
it is possible to optimize application performance on diverse systems. In this deliverable, we
focus on two main approaches included in Intel VTune, namely: the Microarchitectual General
Exploration55 for Intel CPU applications, and the GPU offload analysis for workloads deployed on
Intel GPUs. Microarchitectual General Exploration can be used to identify bottlenecks related to
the different hardware components on the CPU architecture/system, by using hardware counters
to pinpoint the performance issues. The GPU offload analysis supports DPC++ and OpenCL
kernels and provides several performance metrics that allow to verify the parallelism efficiency
of the application.

7.1.1 microarchitectual general exploration for intel cpus

In a simplistic view, execution bottlenecks on current computing devices can be either attributed
to the maximum performance limits of specific units or due to micro-architectural stalls. The
Top-Down analysis56 focuses on these aspects, identifying if in a given cycle the pipeline slots are
empty or filled with a micro-operation (µop). This modeling method is integrated in Intel VTune,
under the Microarchitectual Exploration analysis.57 This analysis provides several metrics in
respect to different parts of the micro-architecture and are derived by relying on the performance
monitoring unit in-built in Intel processors. For this analysis, the events are collected in the
Event-Based Sampling (EBS) mode. With EBS, each hardware counter is configured to provide
a sample-after-value and once this value is reached, the counter increments, an interrupt is
fired and the data collected. After data collection, the counter is reset and the process is repeated.
Moreover, in recent micro-architectures, the Microarchitectual Exploration analysis collects around
60 hardware events. Since there is a limited number of hardware counters to use simultaneously,
Intel VTune relies on multiplexing to obtain all the measurements in a single profiling run, which
can reduce the accuracy of the analysis, especially for short lived kernels. To overcome this issue,
multiple runs can be performed at the cost of higher profiling overhead. While the sampling
methodology of Microarchitectual Exploration analysis allows it to characterize different hotspots
of an application, by attributing the different samples to the loops and functions of an application,
this analysis can also be applied to specific regions of interest through the use of the marker API,
by placing itt resume() and itt pause() calls around the code region to profile.

As it can be observed in Figure 8, the Top-Down method integrated in Intel VTune is based
on a hierarchical tree organization. In the scenario that the pipeline slot is empty, it is necessary
to identify if the stall occurs due to the instruction fetching and decoding (frontend) or due to the
availability of the data operands (backend). On the other hand, in case the pipeline slot contains
a µop, the bottleneck can be either due to the retiring limits of the architecture (usually 4 µop
on Intel processors) or due to the branch prediction engine (bad speculation). Depending on
the identified bottleneck, different insights can be derived. For example, when an application is
limited by the frontend, the user must focus on improving the code layout or reduce the code
memory footprint. Issues related to bad speculation indicate that the code must be inspected
to avoid indirect branches or error conditions that result in machine clears. Since the branch

55Intel Corporation. Understanding How General Exploration Works in Intel® VTune™ Amplifier. https://www.intel.
com/content/www/us/en/developer/articles/technical/understanding-how-general-exploration-works-in-

intel-vtune-amplifier-xe.html. [Online; visited March-2022].
56Yasin, “A top-down method for performance analysis and counters architecture”.
57Intel Corporation, Understanding How General Exploration Works in Intel® VTune™ Amplifier.
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Figure 8 Hierarchical organization of Top-Down analysis58

prediction engine also influences the fetched instructions, reducing the bad speculation issues
may also decrease the impact of the frontend bottlenecks. When an application is limited by
retiring, it means that most of its µops are being executed at the maximum throughput of the
micro-architecture. However, this does not mean that the performance of the application is
maximized. For example, if a scalar application is entirely limited by retiring, vectorization
techniques must be employed to further improve performance. Finally, backend issues can be
either a result of core bound stalls or memory bound stalls. Core bound stalls can occur when
certain execution units are not fully utilized or when there is competition for discrete execution
units. Memory bound stalls result from accesses to the memory hierarchy, such as cache misses
or latency-related issues, which is expected to be the main source of bottlenecks when profiling
sparse computations. The memory bound stalls are further split according to each memory level
contained in the memory hierarchy: L1 bound, L2 bound, L3 bound and DRAM bound. From
each of the metrics it is also possible to identify if the performance issues result from latency or
bandwidth, as well as other inefficiencies, such as false sharing at the L3 cache when executing
in multiple-threads.

7.1.2 gpu offload analysis

The primary analysis type in VTune used for GPU applications is the GPU Offload analysis. It
allows to explore the application execution in the current platform consisting on CPU and GPU,
correlate the activity in both devices, and identify if the application’s performance is bounded by
the CPU or GPU. For compute applications using DPC++ or OpenCL kernels, it allows to explore
the efficiency of the application when using GPU hardware.

In the analysis configuration options, the user can customize the analysis, selecting the options
to trace GPU programming APIs, collecting host stacks, analyze CPU-GPU bandwidth and
show GPU performance insights. These allow, respectively, to analyze DPC++/OpenCL kernels,
analyze call stacks from the CPU, analyze the data transfers between CPU and GPU to obtain the
bandwidth, and get metrics to assess the efficiency of the GPU usage. The metrics available are
the cycles where the EUs are active, stalled or idle (presented in percentage of total cycles), the EU
thread occupancy, i.e., the cycles when a thread is scheduled, and the total number of compute
threads started. Upon completion of the analysis, a summary view is presented, showing the
total time spent on compute tasks, and the execution time per task. From this, the user can
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assess the balance between GPU execution and data transfers. This information can also be taken
from the metrics Host-to-device and Device-to-host transfer. Further results can be seen in the
Graphics tab, with a breakdown of the timings of all computing tasks, split between allocation,
data transfers and execution. The data transfer sizes and instance counts are also presented. The
user can easily identify computing tasks that need optimizing by locating the highlighted entries,
that can have issues such as larger data transfer time than execution time. A timeline view of
events is also available, showing when the CPU and GPU are busy at each instant of execution.

Following the GPU Offload analysis, the GPU Hotspots analysis in VTune allows to charac-
terize the use of the GPU based on hardware metrics. It aims to identify performance issues in
GPU workloads, to understand if they are due to inefficient memory accesses by the kernel, low
occupancy of the GPU or wrong configuration of GPU threads and thread blocks. It offers deeper
insights into the performance issues of GPU kernels relatively to the GPU Offload analysis.

The summary of this analysis contains data on the GPU time, EU cycles, occupancy, peak
occupancy and the most active compute tasks. The amount of cycles where the EUs are active
and the thread occupancy can provide insights on the application efficiency. In addition, the main
cause of the performance degradation is also presented, e.g., performance bound by GPU L3 Cache
Bandwidth. Following this, the main kernels are shown in the ”Hottest GPU Computing Tasks
with Low Occupancy”, and tips on how to improve these metrics are displayed. Additionally,
the percentage of the elapsed time with FPU utilization is shown, along with a histogram of the
bandwidth utilization. Depending on the chosen options for the analysis, the Graphics tab will
display CPU and GPU usage data for each thread and show a list of various hardware metrics
for the GPU, such as the local and global work sizes, total and average time, instruction mix,
the throughput of compute operations, SIMD width of a compute task, number of cycles spent,
average latency, etc. A memory hierarchy diagram is also available, featuring an overview of
the architecture, with the bandwidths achieved in different memory levels and usage metrics
indicated in each component.

7.2 intel advisor

Intel Advisor is a tool for application analysis and development. Through a set of different
analysis, the programmer can use Intel Advisor to assist on developing high-performance code
for CPU and GPU. Intel Advisor is available in a GUI or command line interface.

The analysis available for CPU code are focused on achieving efficient parallelization, vector-
ization and memory accesses. For GPU code, the programmer can identify parts of the code that
can be offloaded, and improve memory accesses and compute operations. In both CPU and GPU
code, a Roofline analysis can be used to get insight into the application performance relatively
to the hardware limits imposed by the machine, through the use of the Cache-Aware Roofline
Model. All available analysis can be done from the Advisor GUI, by creating an Advisor project,
selecting the application binary, the analysis type and all parameters. Alternatively, the command
line interface can be used, and the results generated with it can also be visualized in the GUI or
exported to other file formats. In order to avoid unnecessary overheads in analysis, Intel Advisor
allows the application code to be instrumented in order to restrict the analysis to specific areas of
interest. This can be done by simply using the Instrumentation and Threading Technology API,
particularly by enveloping the code with the itt resume() and itt pause() calls.

When profiling a CPU application, the Survey analysis provides an overview of the perfor-
mance of the different loops and functions calls in the application, and obtaining metrics, such
as the elapsed time, the vectorization efficiency and speedup relatively to scalar execution. More
detailed data can be obtained by performing a Trip Counts analysis, which counts the number of
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Figure 9 CPU (left) and GPU (right) Rooflines on Intel Advisor.

times each loop is executed. This analysis allows to use the FLOP option to obtain the data on
floating point and integer operations. Using the results from the Survey and Trip Counts analysis
with FLOP, Intel Advisor can create a Roofline chart.

As can be observed in Figure 9, the CPU Roofline analysis allows to visualize the Roofline
model for the host CPU. The memory roofs are obtained for each memory level, i.e., L1, L2, L3

and DRAM bandwidths. The compute roofs are obtained for both the vectorized and scalar peak
throughputs for the ADD and FMA operations, and for both single and double precision. The
user can select to view the Roofline model for any number of available cores in the machine, and
for either integer or floating point operations. The application loops and functions are represented
as dots in the chart, with varying sizes and colors depending on their importance. Depending on
the arithmetic intensity of a given loop, this dot will be located in one of two different regions
- the memory bound region, when strictly below the slanted memory roofs, or the compute
bound region, when only below the horizontal compute roofs. When hovering the cursor on
a dot, it is possible to view a dotted vertical line that shows the possible performance that the
loop may obtain. Depending on which roofs the line intersects, the user can have a notion of
the main bounds to performance, usually the roofs immediately above, and thus know which
type of optimizations are necessary to achieve better performance. When considering sparse
computations, for instance, it can be expected that a dot representing the main loop computing
a sparse matrix and vector product to be located in the memory bound region, which indicates
a need to organize data accesses in order to achieve better memory bandwidth, or block data in
order to achieve better locality. Compute related optimizations, on the other hand, can consist
on targeting the vector units available in the CPU, for example. In the case of codes already
vectorized, the vectorization efficiency can be an improvement point.

For GPU applications, the Survey analysis obtains the timings for the different GPU kernels
instead of loops and functions. The data on floating point and integer operations is also obtained
through a Trip Counts with FLOP analysis, similarly to its CPU counterpart. When visualizing
the GPU Roofline results, Advisor also presents metrics such as the utilization of GPU resources,
data transfer times between CPU and GPU, or the percentage of time the GPU execution units are
active, stalled or idle. In the GPU Roofline view, shown in Figure 9, depending on the target GPU,
the memory roofs for the L3 cache, the Shared Local Memory, Graphics Technology Interface, and
DRAM bandwidth are represented. For the compute roofs, the vector ADD peak throughputs
are available for the available data types bit-width, 8, 16, 32, and 64. The developer can select to
view the Roofline for integer or floating point data. Similarly to the CPU, the dots representing
the kernels can be located in the memory bound or compute bound regions. When compute
bound, as the GPU is based on vector processing units, the optimizations consist usually on
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Figure 10 Timeline of a GPU-accelerated application on an NVIDIA Tesla V100 GPU presented by the
NVIDIA Visual Profiler.

achieving better utilization of the SIMD lanes, i.e., organize operations to run in parallel across a
sub-warp/sub-group. Examples of memory-related optimizations can be a better organization of
the data structures in order to achieve coalesced data accesses.

In both CPU and GPU Roofline analysis, Advisor allows the user to compare two or more
results in the same Roofline view. This allows to verify the improvements between each version
of the application, to assess the efficacy of the optimizations. Differences in performance and
arithmetic intensity can be easily seen when using this feature, thus guiding the developer during
the optimization process.

7.3 profiling and instrumentation on nvidia gpus

For applications that employ NVIDIA GPUs to offload and accelerate computations, NVIDIA’s
CUDA Toolkit59 comes with built-in profiling and instrumentation tools. In particular, the CUDA
profiler, nvprof,60 is designed to easily instrument CUDA API calls, including memory allocations,
data transfers between host (i.e., CPU) and device (i.e., GPU), as well as kernel launches. With
the help of the NVIDIA Visual Profiler, this information may be presented for offline analysis in
the form of a visual timeline that quickly grants an overview of an application’s GPU activity.
An example is shown in Figure 10, which portrays a small extract from the execution of a GPU-
accelerated finite element code on an NVIDIA Tesla V100 GPU.61

More detailed analysis can also be carried out at the level of individual kernels. This usually
requires running nvprof with the --analysis-metrics option, which causes the CUDA runtime
to record a great deal of useful information about kernel executions. This option uses hardware
performance monitoring features of the GPU hardware to collect various performance metrics.
Because kernels must be executed many times over to collect the required performance data, such

59NVIDIA Corporation. CUDA Toolkit Documentation v11.6.1. NVIDIA Corporation. 2022. url: https://docs.

nvidia.com/cuda/index.html.
60NVIDIA Corporation, Profiler User’s Guide.
61NVIDIA Corporation. NVIDIA Tesla V100 GPU architecture. NVIDIA Corporation. 2017. url: https://images.

nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.
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Figure 11 Analysis of a kernel’s memory usage presented by the NVIDIA Visual Profiler.

profiling therefore incurs a considerable overhead.
Figure 11 shows an example of analysing the memory usage of a kernel from the GPU-

accelerated finite element code mentioned above. The number of reads and writes are shown in
addition to the achieved throughput for each of the GPU’s different memory types, including
shared memory, caches and device memory. Due to the use of an unstructured mesh, the kernel
in question features highly irregular memory access patterns and is severely memory-bound.
Nevertheless, the profiler’s analysis indicates that a throughput of 559 GB/s (62 %) is attained
out of the 900 GB/s theoretical maximum of the GPU device memory. This should be considered
a high degree of bandwidth usage for a kernel with such irregular memory access patterns. If
needed, additional memory statistics are also available to report memory traffic volumes and
cache hit rates at different levels of the GPU’s memory hierarchy.

In addition to metrics based on performance counters, nvprof may also act as a sampling
profiler. This mode of operation is useful for correlating various performance issues with specific
lines of kernel source or with specific instructions of the compiled kernel assembly code, as
illustrated in Figure 12. This example points to specific source code lines where the kernel
performs most of its irregular loads from memory. These irregular memory accesses prevent
memory coalescing, and thus more transactions are needed compared to the ideal case of fully
coalesced reads. Ultimately, such a performance analysis should guide one in the direction of
memory optimisations, as described in the CUDA C++ Best Practices Guide.62

In recent versions of the CUDA Toolkit, nvprof and the NVIDIA Visual Profiler have been

62NVIDIA Corporation. CUDA C++ Best Practices Guide. NVIDIA Corporation. 2022. url: https://docs.nvidia.
com/cuda/cuda-c-best-practices-guide/.

SparCity 23

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/


Figure 12 Analysing kernel source and assembly code based on using nvprof as a sampling profiler to diagnose
inefficient global memory accesses caused by irregular memory access patterns and a lack of memory coalescing.

superseded by NVIDIA Nsight Systems and NVIDIA Nsight Compute, which offer essentially
the same profiling and instrumentation capabilities for the successors of NVIDIA’s Volta GPUs.

7.4 tools for visual and programmatic analyses on

graphcore ipus

Graphcore provides PopVisionTM, a set of tools for visual and programmatic analyses of appli-
cations run on IPU systems. These tools can be downloaded from Graphcore’s support portal.63

Readers are encouraged to explore the extensive documentation 64 and tutorials 65 on these tools
and their usage. For the purposes of this report, we shall summarise the key forms of analyses
that are possible with these tools at present. These include analysing PoplarTM graphs and their
execution on IPUs, and analysing host side code in the context of the overall application run on
an IPU system.

7.4.1 analysing poplar profiles

PoplarTM graphs run on IPUs can be deeply inspected to analyse and optimise for memory
and performance using the PopVisionTM Graph Analyser tool.66 For instance, the tool can show
tile memory usage across all the tiles on device in the IPU system on which a program is run.
Some variables, e.g. accumulators that repeatedly get flushed, are not always live during program

63Graphcore’s support portal: https://downloads.graphcore.ai/
64Profiling and debugging documentation: https://docs.graphcore.ai/en/latest/software.html
65PopVisionTM tutorials: https://github.com/graphcore/tutorials/tree/master/tutorials/popvision
66PopVisionTM Graph Analyser user guide: https://docs.graphcore.ai/projects/graph-analyser-userguide/
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execution, and the Graph analyser is able to capture such information in liveness reports detailing
operational memory usage across program steps. The tool also shows placement of variables per
tile, including their size. Cycle and FLOP counts for vertices using these variables is also available
for examining and tuning the performance of the program. It is also possible to analyse PoplarTM

graphs programmatically using the PopVisionTM Analysis Library (libpva),67 which is part of
the Poplar SDK and provides both a C++ and a Python interface for users to query profiles.

7.4.2 tracing applications

Any IPU application can be instrumented to identify potential bottlenecks between the host and
device. Graphcore’s PoplarTM graph programming framework, and higher level frameworks such
as PopART, Pytorch, and Tensorflow, make use of the PopVisionTM Trace Instrumentation Library
(libpvti)68 to trace applications programmatically, also available to users via C++ and Python
APIs. The default, framework provided tracing, and custom tracing instrumented by user, can be
visually inspected using the PopVisionTM System Analyser tool.69 As an example, for a gradient
descent based machine learning (ML) application, if user were to analyse the time taken by a
single iteration involving data transfer between host and device and a gradient update, the user
could create a custom trace channel and introduce trace points within the training loop. The
application code run on the host would then log the iteration trace in a report available for later
analyses. In addition to tracing an application’s execution, libpvti also allows for capturing
numerical data (series) from a run of the application, an example being logging the iteration
loss, following the ML example just mentioned. This data series is displayed in real (wall) time
alongside the application trace, enabling analyses of the impact of application execution on this
series.

8 cache simulation for irregular memory traffic

This section describes profiling and instrumentation tools developed by the Simula partner, which
is based on a cache tracing approach70 that was recently developed to support detailed perfor-
mance modelling of sparse kernels, in particular different variants of sparse matrix-vector multi-
plication, or SpMV. These tools include a cache tracing simulator for SpMV kernels on multicore
CPUs for predicting cache and memory traffic in multilevel memory hierarchies with private and
shared caches. We also give an example of using hardware performance monitoring features of
Intel CPUs to accurately measure memory traffic throughout the memory hierarchy, which is a
critical part of validating the cache tracing performance model.

8.1 cache tracing for sparse matrix-vector multiplication

For sparse matrix-vector multiplication (SpMV) kernels, performance models can often fail to
gauge the impact of irregular memory access patterns. In these cases, memory accesses inherently
depend on the problem data itself, since they arise from the underlying matrix sparsity pattern
(i.e., the locations of matrix nonzeros). Moreover, various realistic problems feature a wide range
of disparate sparsity patterns, as illustrated in Figure 13.

67PopVisionTM Analysis Library user guide: https://docs.graphcore.ai/projects/libpva/
68PopVisionTM Trace Instrumentation Library user guide: https://docs.graphcore.ai/projects/libpvti/
69PopVisionTM System Analyser user guide: https://docs.graphcore.ai/projects/

system-analyser-userguide/
70James D. Trotter, Johannes Langguth, and Xing Cai. “Cache simulation for irregular memory traffic on multi-core

CPUs: Case study on performance models for sparse matrix–vector multiplication”. Journal of Parallel and Distributed
Computing 144 (2020), pp. 189–205. issn: 0743-7315. doi: 10.1016/j.jpdc.2020.05.020.
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HV15R GL7d19 stokes FullChip Hardesty3

Figure 13 Sparsity patterns of a few sparse matrices from the SuiteSparse Matrix Collection.

In this section, a performance model based on cache tracing that explicitly accounts for the
matrix sparsity pattern is presented. This is achieved by first obtaining a trace of the memory
accesses that are induced by a particular kernel, and then using it to carry out a high-level
simulation of the memory hierarchy of a specified multicore CPU system. The result of such a
simulation is a set of cache and memory traffic estimates for each CPU core. By combining these
estimates with the bandwidths of cache and memory (accounting for NUMA effects, if needed),
we can identify bottlenecks in the memory hierarchy and predict the performance accordingly.

With the aim of applying the proposed performance model, we have developed tools for
capturing memory traces of SpMV kernels. This includes kernels for several common sparse
matrix storage formats, such as compressed sparse row (CSR), coordinate (COO), ELL and a
hybrid format.71 At the moment, these tools specifically target SpMV kernels and must be
extended to encompass any new, irregular kernels one may wish to study. In the future, a
more general approach could be to use instrumentation or hardware monitoring to automatically
extract the required memory traces.

Once the memory trace has been obtained, we can supply it to our cache simulation tool to
produce cache and memory traffic estimates at every level of the memory hierarchies of typical
multicore CPUs. The simulation is based on a simplified model of such memory hierarchies, and
it is related to the Ideal Cache Model,72 but with some additions to simplify the overall simulation
and to incorporate shared caches.

First, the cache simulation model assumes that caches are fully associative, and that a least
recently used (LRU) policy is used when evicting cache lines to make room for new ones. The
simulator accounts for cache lines that are brought to a cache as a direct result of load or store
instructions issued by a CPU core. It does not account for any form of prefetching, unless it
is explicitly incorporated into the memory trace itself. Furthermore, caches are assumed to be
inclusive of higher-level caches (i.e., those closer to the CPU), meaning that a cache line residing in
a particular cache must also be present in lower-level caches (farther from the CPU). For example,
anything that is found in a first-level cache must also be present in second- and third-level caches.
Although this assumption may not always be true in practice (e.g., the L2 and L3 caches in Intel’s
Skylake Server architecture are non-inclusive73), it greatly simplifies the overall modelling effort
by allowing the cache simulation to be carried out independently for each cache. Alternatively, a
non-inclusive cache can be treated as though it were larger, increasing its size by an amount equal

71Nathan Bell and Michael Garland. “Implementing Sparse Matrix-Vector Multiplication on Throughput-Oriented
Processors”. SC ’09: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis. ACM,
2009. doi: 10.1145/1654059.1654078.

72Matteo Frigo et al. “Cache-Oblivious Algorithms”. ACM Transactions on Algorithms 8.1 (2012), 4:1–4:22. issn:
1549-6325. doi: 10.1145/2071379.2071383.

73Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 248966-040. Intel Corporation,
2018, Ch. 2.
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to the size of those higher-level caches (closer to the CPU) not included in the current cache.
For a cache of a given size and with a given cache line size (64 bytes, in most cases), the

simulation runs through the provided sequence of memory accesses to estimate the number of
cache misses. The cache is represented by a least recently used (LRU) list that may hold a number
of items equal equal to the cache size divided by the line size. The list is used to keep track of
cache lines that were accessed most recently and to evict the oldest entries whenever new entries
are placed at the front of the list. As the simulation progresses, it counts the number of cache
misses that occur, and the final memory traffic volume is simply the cache line size multiplied by
the number of cache misses.

For caches that are shared by several CPU cores, (e.g., the third-level caches of most multicore
CPUs), the sequence of memory accesses observed by the shared cache is actually a combination
of the underlying memory accesses generated by each individual core. In reality, these memory
accesses occur in some unpredictable order, for example, due to differences between cores in
thread scheduling or memory access latencies. Even executing the same kernel twice may produce
different memory traces. To avoid needlessly complicating the cache simulation, we instead
assume that memory accesses from different CPU cores are perfectly interleaved. The CPU cores
are thus treated as if their memory requests are served one at a time in a round-robin fashion.

A known limitation of cache simulation methods in general is that they are relatively expen-
sive, at least compared to executing the kernel itself. On the other hand, the simulation and
performance modelling can be performed even without access to the multicore CPU system being
modelled, or in scenarios where the data traffic cannot be quantified directly through hardware
monitoring facilities.

8.2 cache tracing results

The cache tracing performance model explained above is based on high-level simulations of the
memory hierarchies of multicore CPU systems, including private as well as shared caches. The
model has been validated for multicore CPUs based on the Intel Sandy Bridge and Skylake X
architectures by comparing its memory traffic predictions to measurements of actual cache and
memory traffic obtained from hardware performance counters on those systems.

More specifically, measurements of actual data traffic volumes are obtained from Performance
Monitoring Units (PMUs) that are configured to report hardware performance events.74 In our
case, these events are accessed by providing event encodings to the perf event open75 system
call and using the returned file descriptor to read values of hardware performance counters.
The relevant event encodings are acquired from the libpfm476 library by providing it with corre-
sponding event names. Suitable hardware events were selected after using microbenchmarks to
correlate hardware events with data transfers between different levels of the memory hierarchy,
as described by Molka et al..77

Table 5 shows measurements of cache and memory traffic volumes for a standard, OpenMP-
parallel SpMV kernel based on the compressed sparse row (CSR) storage format on a dual socket
Intel Xeon Platinum 8168 system. On each CPU core, the events l1-dcache-load-misses, l2 lines in:any

74Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual: Volume 3 (3A, 3B, 3C & 3D): System
Programming Guide. 325384-065US. Intel Corporation, 2017, Ch. 18–19.

75Vincent Weaver. perf event open. Linux programmer’s manual, version 5.13, The Linux man-pages project (Eds.
Michael Kerrisk and Alejandro Colomar). 2012.

76Stephane Eranian and Robert Richter. perfmon2: improving performance monitoring on Linux. http://perfmon2.

sourceforge.net/.
77Daniel Molka et al. “Detecting Memory-Boundedness with Hardware Performance Counters”. Proceedings of the

8th ACM/SPEC on international conference on performance engineering. ACM, 2017, pp. 27–38.
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L1←L2 [MiB] L2←L3 [MiB] L3←DRAM [MiB]

matrix meas. est. (error) meas. est. (error) meas. est. (error)

TSOPF RS b2383 194 187 (−3.6 %) 199 185 (−7.0 %) 187 185 (−1.1 %)
spal 004 1320 1054 (−20.2 %) 866 840 (−3.0 %) 535 528 (−1.3 %)
RM07R 525 488 (−7.0 %) 481 454 (−5.6 %) 441 447 (+1.4 %)
relat9 1504 1477 (−1.8 %) 882 844 (−4.3 %) 593 589 (−0.7 %)
HV15R 3683 3522 (−4.4 %) 3467 3368 (−2.9 %) 3346 3360 (−0.4 %)
GL7d19 3213 2714 (−15.5 %) 2425 2397 (−1.2 %) 483 473 (−2.1 %)
sx-stackoverflow 3254 2565 (−21.2 %) 2342 2173 (−7.2 %) 504 552 (+9.5 %)
FullChip 511 490 (−4.1 %) 544 462 (−15.1 %) 410 428 (+4.4 %)
Freescale1 389 381 (−2.1 %) 398 369 (−7.3 %) 316 332 (+5.1 %)
circuit5M 1196 1185 (−0.9 %) 1073 957 (−10.8 %) 908 927 (+2.1 %)
Hardesty3 744 734 (−1.3 %) 653 620 (−5.1 %) 632 618 (−2.2 %)

Table 5 Measurements and estimates of cache and memory traffic (in MiB) for a SpMV ker-
nel with the CSR storage format on a dual socket Intel Xeon Platinum 8168 system. For
each CPU core, the hardware performance events “l1-dcache-load-misses”, “l2 lines in:any” and “off-
core response 0:any data:any rfo:l3 miss local:l3 miss miss remote hop1 dram:snp any” are used to measure
L1←L2, L2←L3, and L3←DRAM traffic, respectively. The measured cache and memory traffic volumes
shown are the sum across all cores.

and offcore response 0:any data:any rfo:l3 miss local:l3 miss miss remote hop1 dram:snp any are used
to measure L1←L2, L2←L3, and L3←DRAM traffic, respectively. For comparison, estimates
of cache and memory traffic produced by the cache tracing approach are also shown. Overall,
the estimates from the cache simulation are close to the memory traffic measurements. The
error is less than 20 % even for very challenging and irregular matrices, such as “GL7d19” and
“sx-stackoverflow”. Additional measurements and cache tracing results are found in a published
research paper,78 together with detailed explanations of discrepancies between measurements
and cache tracing estimates, as well as further discussion of the accuracy and limitations of the
cache tracing approach.

Since the end goal is to model the performance of SpMV kernels, the estimated cache and
memory traffic volumes serve as intermediate results. Ultimately, cache and memory bandwidths
are also needed to determine the time needed to transfer data from each memory hierarchy level.
Although theoretical bandwidth numbers are sometimes provided by vendors, it is more common
in practice to use microbenchmarks, such as STREAM,79 to measure the needed bandwidths.
In our current example, the estimated cache tracing performance is based on experimentally
measured per-core bandwidths of 13.4, 12.5 and 10.1 GB/s for L1←L2, L2←L3 and L3←DRAM
traffic, respectively. In addition, a bandwidth of 99.8 GB/s is used for the aggregate memory
traffic for the NUMA domain of each socket on the dual socket Intel Xeon Platinum 8168 system.
Data transfer times are found by dividing estimated cache or memory traffic volumes by the
corresponding bandwidth, and the supposed performance bottleneck is simply the memory
hierarchy level with the longest data transfer time.

Table 6 finally compares the measured performance of the CSR SpMV kernel to the per-
formance predicted by the cache simulation approach for a selection of large, sparse matrices

78Trotter, Langguth, and Cai, “Cache simulation for irregular memory traffic on multi-core CPUs: Case study on
performance models for sparse matrix–vector multiplication”.

79John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance Computers. Department of Com-
puter Science School of Engineering and Applied Science, University of Virginia. 2013. url: https://www.cs.

virginia.edu/stream/.
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performance [Gflop/s]

matrix rows columns nonzeros measured cache sim (error)

atmosmodl 1.49M 1.49M 10M 37.37 25.74 (-31 %)
HV15R 2.02M 2.02M 283M 30.68 31.96 ( +4 %)
Freescale1 3.43M 3.43M 19M 16.50 13.65 (-17 %)
Freescale2 3.00M 3.00M 23M 17.75 23.67 (+33 %)
FullChip 2.99M 2.99M 27M 4.55 4.97 ( +9 %)
circuit5M 5.56M 5.56M 60M 4.05 3.85 ( -5 %)
circuit5M dc 3.52M 3.52M 19M 19.31 19.07 ( -1 %)
memchip 2.71M 2.71M 15M 21.83 19.87 ( -9 %)
Hardesty3 8.22M 7.59M 40M 16.18 24.60 (+52 %)
ML Geer 1.50M 1.50M 111M 32.04 31.97 ( 0 %)
Transport 1.60M 1.60M 24M 34.35 28.49 (-17 %)
tp-6 0.14M 1.01M 12M 11.41 7.78 (-32 %)
rajat31 4.69M 4.69M 20M 23.19 22.66 ( -2 %)
dgreen 1.20M 1.20M 38M 22.73 13.21 (-42 %)
nv2 1.45M 1.45M 53M 14.42 12.59 (-13 %)
ss 1.65M 1.65M 35M 24.22 24.26 ( 0 %)
stokes 11.45M 11.45M 349M 14.51 22.18 (+53 %)
vas stokes 1M 1.09M 1.09M 35M 17.06 22.52 (+32 %)
vas stokes 2M 2.15M 2.15M 65M 15.80 22.47 (+42 %)
vas stokes 4M 4.38M 4.38M 132M 14.14 22.55 (+59 %)
cage14 1.51M 1.51M 27M 28.47 25.96 ( -9 %)
cage15 5.15M 5.15M 99M 25.81 24.39 ( -6 %)

Table 6 Measured and predicted performance (in Gflop/s) based on the cache tracing performance model for
a SpMV kernel with the CSR storage format on a dual socket Intel Xeon Platinum 8168 system. The dataset
consists of 23 unsymmetric, real matrices from the SuiteSparse Matrix Collection with more than 10 million
nonzeros and more than one million columns.

from the SuiteSparse Matrix Collection.80 Since the predictions appear to largely agree with
the measured performance, the proposed performance model captures the overall performance
characteristics of the irregular kernel.

In some instances, such as “Hardesty3”, “stokes”, “vas stokes 2M” and “vas stokes 4M”, the
performance model overestimates the performance by about 50 %. Possible explanations may
include less cache reuse than expected, for example, due to a substantial number of conflict
misses, or lower effective bandwidth due to poor hardware prefetching. Recall that conflict
misses are ignored by the cache simulator due to the assumption of fully associative caches, and
the experimentally measured bandwidths used are based on streaming access patterns, where
prefetching should be mostly successful. Conversely, in cases where the model underestimates the
actual performance, there may be more cache reuse than expected, for example, if the underlying
replacement policy is different than the supposed LRU model,81 or due to caches being non-
inclusive. In any case, further analysis is needed to understand these discrepancies between the
model and the performance that is observed in practice.

80Timothy Davis and Yifan Hu. “The University of Florida Sparse Matrix Collection”. ACM Transactions on Mathe-
matical Software (TOMS) 38.1 (2011), pp. 1–25. issn: 1557-7295. doi: 10.1145/2049662.2049663.

81Andreas Abel and Jan Reineke. “Measurement-based modeling of the cache replacement policy”. 2013 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS). 2013, pp. 65–74. doi: 10.1109/RTAS.2013.

6531080; Pepe Vila et al. “CacheQuery: Learning Replacement Policies from Hardware Caches”. PLDI ’20: Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. Association for Computing
Machinery, 2020, pp. 519–532. doi: 10.1145/3385412.3386008.
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9 conclusions

The deliverable 4.1 focused on presenting several state-of-the-art tools that can be used to monitor
the performance, power and energy on computing systems equipment with different process-
ing devices that range from multi-core CPUs, to GPUs and Graphcore IPUs. First, hardware
and software events for performance and energy monitoring were introduced, with a specific
emphasis given to the events that might be able to provide more insights about the execution
of sparse applications. Since most of the events supported by current operating systems and
computing devices are accessed through profiling tools, the main features of the most commonly
used tools, i.e., Perf, PAPI and LIKWID, were exposed in this deliverable. Moreover, communica-
tion profiling tools based on the precise sampling on hardware counters contained in Intel and
AMD CPUs, such as ComDetective and ReuseTracker, were also described. As these tools can
provide insightful information regarding the data communication between and inside threads,
they allow for detecting bottlenecks that may occur when parallelizing sparse kernels. A similar
approach for GPU-GPU or GPU-CPU pairs is also considered within the ComScribe tool, which
is based on the communication protocols of NVIDIA. System-level monitoring tools can be used
to aid the monitoring of the different events and data collection, especially when targeting large
scale systems. To this respect, the main concepts of LDMS, Performance Co-Pilot and Grafana
were included in this report. Dynamic binary instrumentation methods, e.g., Intel SDE, Intel
Pin and Intel GTPin, were also covered, as the data collected by these tools can provide hints
about the execution units exercised by applications. As a use case of the utilization of dynamic
instrumentation approaches, a custom tool for reuse distance analysis and cache partitioning on
ARM A64FX CPU was also elaborated in the deliverable. Next, some of the frameworks provided
by the different device vendors for performance analysis on their hardware were also described.
For Intel CPUs and GPUs, the most common frameworks used in the state-of-the art are Intel
Advisor, which includes the Cache-Aware Roofline Model, and Intel VTune that encapsulates the
Top-Down performance analysis method. For NVIDIA GPUs, different metrics can be obtained
from the NVIDIA Visual Profiler, while for Graphcore IPU, the Graphcore PopVision and Poplar
tools are used instead. Finally, a cache simulation method for irregular memory traffic focused on
sparse matrix-vector multiplication was also introduced. This tool considers the sparsity patterns
of the matrix to provide more accurate traffic estimates between memory levels contained in the
CPUs, which allows to pinpoint the main execution bottlenecks of SpMV kernel.
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