
Profiling and instrumentation tools

Deliverable No: D4.1
Deliverable Title: Profiling and instrumentation tools
Deliverable Publish Date: 31 March 2022

Project Title: SparCity: An Optimization and Co-design Framework for
Sparse Computation

Call ID: H2020-JTI-EuroHPC-2019-1
Project No: 956213

Project Duration: 36 months
Project Start Date: 1 April 2021

Contact: sparcity-project-group@ku.edu.tr

List of partners:

Participant no. Participant organisation name Short name Country
1 (Coordinator) Koç University KU Turkey
2 Sabancı University SU Turkey
3 Simula Research Laboratory AS Simula Norway
4 Instituto de Engenharia de Sistemas e Computadores, INESC-ID Portugal

Investigação e Desenvolvimento em Lisboa
5 Ludwig-Maximilians-Universität München LMU Germany
6 Graphcore AS Graphcore Norway

i

contents

1 Introduction 1
1.1 Objectives of This Deliverable 1
1.2 Work Performed 1
1.3 Deviations and Counter Measures 2
1.4 Resources 2

2 Performance and energy monitoring events 2
2.1 Hardware counters 3
2.2 Software events 5

3 Pro�ling tools based on hardware counters 6
3.1 Perf: Performance analysis tools for Linux 6
3.2 Performance Application Programming Interface (PAPI) 7
3.3 LIKWID performance tools 7

4 Communication pro�ling and monitoring tools 7
4.1 ComDetective: A Communication Monitoring Tool 8
4.2 ReuseTracker: A Reuse Distance Analysis Tool 9
4.3 ComScribe: Inter-GPU Communication Detection Tool 10

5 System-level Monitoring Tools 11
5.1 Lightweight Distributed Metric Service (LDMS) 11
5.2 Performance Co-Pilot 12
5.3 Grafana: Open source visualization tool 12
5.4 Measurement Overhead 12

6 Dynamic instrumentation and cache partitioning tools 14
6.1 Intel SDE, Pin and GTPin 14
6.2 Reuse Distance Analysis and Cache Partitioning for the ARM A 64FX CPU 15

7 Vendor-speci�c frameworks for application analysis 17
7.1 Intel Vtune 18
7.1.1 Microarchitectual General Exploration for Intel CPUs 18
7.1.2 GPU of�oad analysis 19

7.2 Intel Advisor 20
7.3 Pro�ling and instrumentation on NVIDIA GPUs 22
7.4 Tools for visual and programmatic analyses on Graphcore IPUs 24
7.4.1 Analysing Poplar Pro�les 24
7.4.2 Tracing Applications 25

8 Cache simulation for irregular memory traf�c 25
8.1 Cache tracing for sparse matrix-vector multiplication 25
8.2 Cache tracing results 27

9 Conclusions 30

ii

1 introduction
The Spar City project is funded by EuroHPC JU (the European High Performance Computing
Joint Undertaking) under the 2019call of Extreme Scale Computing and Data Driven Technologies
for research and innovation actions. Spar City aims to create a supercomputing framework
that will provide ef�cient algorithms and coherent tools speci�cally designed for maximizing
the performance and energy ef�ciency of sparse computations on emerging High Performance
Computing (HPC) systems, while also opening up new usage areas for sparse computations in
data analytics and deep learning.

Sparse computations are commonly found at the heart of many important applications, but
at the same time it is challenging to achieve high performance when performing the sparse
computations. Spar City delivers a coherent collection of innovative algorithms and tools for
enabling both high ef�ciency of sparse computations on emerging hardware platforms. More
speci�cally, the objectives of the project are:

• to develop a comprehensive application and data characterization mechanism for sparse
computation based on the state-of-the-art analytical and machine-learning-based perfor-
mance and energy models,

• to develop advanced node-level static and dynamic code optimizations designed for mas-
sive and heterogeneous parallel architectures with complex memory hierarchy for sparse
computation,

• to devise topology-aware partitioning algorithms and communication optimizations to boost
the ef�ciency of system-level parallelism,

• to create digital SuperTwins of supercomputers to evaluate and simulate what-if hardware
scenarios,

• to demonstrate the effectiveness and usability of the Spar City framework by enhancing
the computing scale and energy ef�ciency of challenging real-life applications.

• to deliver a robust, well-supported and documented Spar City framework into the hands
of computational scientists, data analysts, and deep learning end-users from industry and
academia.

1.1 objectives of this deliverable
The objective of this deliverable is to provide an overview of the tools for performance, power
and energy monitoring on computing nodes equipped with different device architectures (such
as CPU, GPU, and Graphcore IPU), as well as on HPC systems that combine several computing
nodes. This step is important in order to de�ne the most adequate platform-speci�c instru-
mentation frameworks to be used when assessing the application characteristics, determining
the execution bottlenecks and evaluating their ability to fully exploit the capabilities of a given
hardware. A special emphasis is paid on tools and frameworks for run-time computation and
communication monitoring, also based on hardware counters.

1.2 work performed
In this deliverable, the features of several tools for performance, power and energy monitoring on
different computing systems and devices, including multi-core CPUs, GPUs and Graphcore IPUs,

Spar City 1

are presented. The deliverable starts with the introduction of some of the existing performance
and monitoring events that can be used to pro�le and identify bottlenecks of sparse applications.
Next, a set of pro�ling tools based on hardware counters is also described, as these tools are
traditionally used to access the hardware counters in-built in current computing systems. Since
some of these counters can also be used for communication pro�ling and execution monitoring,
these type of tools is also targeted in this deliverable. Moreover, dynamic binary instrumenta-
tion approaches are also covered, as the information obtained from these methods can provide
additional information to complement the one obtained from hardware and software events.
Furthermore, frameworks for application analysis on Intel CPUs and GPUs, NVIDIA GPUs and
Graphcore IPUs are also addressed in this deliverable. Finally, a performance model of sparse
kernels based on cache simulation is presented.

1.3 deviations and counter measures
There was no deviation from the work plan.

1.4 resources
It is likely that in the course of the project, new pro�ling and instrumentation tools and frame-
works will be added to the core list provided in this document (and/or their set of features and
implementation will be improved).

2 performance and energy monitoring events
Due to the ability of sparse computations to reduce the storage and computational requirements
of real-world applications, these type of kernels have become increasingly relevant in several
scienti�c �elds, such as physics, mathematics and machine learning. 1 Sparse kernels rely on
data formats tailored to ef�ciently store the non-zero entries of the input data, 2 which result
in irregular memory access patterns, leading to performance and ef�ciency degradation. To
tackle this issue, it is essential to correlate the application characteristics and the capabilities of
the underlying hardware when performing sparse applications, allowing to uncover the main
bottlenecks that affect their execution.

To this end, software and hardware events in-built in current operating and computing systems
can be used to to pro�le application execution on different devices, and to extract metrics useful
for the optimization of sparse applications. For example, for the Linux operating system, there are
several tools to monitor the different components that compose the operating system (see Figure 1).
These software events can provide insights regarding the utilization of different components in
the software and hardware stack, e.g., disk and network usages, which can become a bottleneck
when deploying sparse applications in large scale systems. Through performance monitoring
tools, additional information can be obtained from the hardware counters, which are contained
in the chip package of modern processors, thus providing insights on the utilization of different

1Shail Dave et al. “Hardware Acceleration of Sparse and Irregular Tensor Computations of ML Models: A Survey
and Insights”. Proceedings of the IEEE109.10 (2021), pp. 1706–1752. doi : 10.1109/JPROC.2021.3098483; Thaha
Mohammed et al. “DIESEL: A novel deep learning-based tool for SpMV computations and solving sparse linear
equation systems”. The Journal of Supercomputing77.6 (2021), pp. 6313–6355; Amuthan A. Ramabathiran and Prabhu
Ramachandran. “SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs”. Journal of
Computational Physics445 (2021), p. 110600. issn : 0021-9991. doi : https://doi.org/10.1016/j.jcp.2021.110600 .
url : https://www.sciencedirect.com/science/article/pii/S0021999121004952 .

2Yue Zhao et al. “Bridging the gap between deep learning and sparse matrix format selection”. Proceedings of the
23rd ACM SIGPLAN symposium on principles and practice of parallel programming. 2018, pp. 94–108.

Spar City 2

Figure 1 Linux components and speci�c tools to monitor each component.3

hardware components when performing sparse computations.

2.1 hardware counters
Modern multi-core CPUs support an extensive set of hardware counters in order to measure
events related to the performance and energy consumption of applications, e.g., Intel CPUs pro-
vide hundreds of different events that can be tacked. 4 The counters provided by the performance
monitoring unit have a vast range of applicability, from measuring the amount of stalls that origi-
nate from accessing different hardware components, to the number of �oating-point instructions
performed by an application, and cache misses that result from each memory level. Since sparse
computations are expected to be limited by the memory capabilities of computing devices, mainly
due to the irregular accesses, hardware counters related to the memory requests are especially
important to pro�le these workloads. Moreover, counters related to the �oating point instructions
should also be considered to assess the utilization of compute units. This task can be performed
by using the counters presented in Table 1.

When evaluating the accesses to the memory hierarchy, the total amount of loads and stores,
and the misses of each level can provide useful insights regarding cache utilization and ef�-
ciency of the memory accesses. While for measuring loads, stores and L1 data misses it is
only necessary to access a single counter, in the case of L2 cache data misses and L3 misses,
it is necessary to obtain data from two counters. In the case of L2 data misses, it is nec-
essary to compute the difference between all the memory requests from the core that refer-
ence a cache line in the last level cache (LLCREFERENCE) and the code reads that miss L2
cache (L2 RQSTS.CODERD MISS). As for the LLC misses, we rely on the sum of two IMC
uncore events,5 which allow to measure all the access to the main memory, i.e., DRAM reads
(CAS COUNT RD) and DRAM writes (CAS COUNT WR). Other hardware counters provide

4R Intel. “and IA- 32 Architectures. Software Developer's Manual. Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and
3C”. Order Number(64).

5Intel Xeon Processor Scalable Memory Family. “Uncore Performance Monitoring Reference Manual”. Intel
Corporation, July(2017).

Spar City 3

measurements regarding the execution stalls that occur due to the misses in speci�c memory
levels (e.g. CYCLE ACTIVITY.STALLS L1D MISS) or regarding the cycles where there are out-
standing misses. Given that stalls result in low execution performance and ef�ciency, considering
the measurements obtained from these counters may allow to pinpoint the main execution bottle-
necks of sparse computations.

Table 1 Hardware counters for pro�ling sparse computations.

Metric Hardware Counters Description
Cycles CPU CLK UNHALTED.THREAD Counts the number of core cycles while the log-

ical processor is not in halt state.
Loads MEM INST RETIRED.ALL LOADS Counts the number of retired loads.
Stores MEM INST RETIRED.ALL STORES Counts the number of retired stores.
L1 Data Misses L1D.REPLACEMENT Counts the data line replacements that occur on

L1D cache.
L2 Data Misses LLC REFERENCE-

L2 RQSTS.CODERD MISS
Number of data requests that miss L 2D cache.
Corresponds to the difference between every
core request that references a cache line in LLC
and the L2 code misses.

LLC Misses CAS COUNT.RD+CAS COUNT.WR Sum between all DRAM reads and all DRAM
writes.

L1 Data Stalls CYC ACTy.STALLS L1D MISS Stalls that occur due to outstanding loads that
miss L1D cache.

L2 Stalls CYC ACTy.STALLS L2 MISS Stalls that occur due to outstanding loads that
miss L2 cache.

L3 Stalls CYC ACTy.STALLS L3 MISS Stalls that occur due to outstanding loads that
miss L3 cache.

Memory Stalls CYC ACTy.STALLS MEM ANY Stalls that occur due to outstanding loads in the
memory subsystem.

Cycles with misses on L1
Data

CYC ACTy.CYCLES L1D MISS Cycles while there are outstanding loads that
miss L1D cache.

Cycles with misses on L2 CYC ACTy.CYCLES L2 MISS Cycles while there are outstanding loads that
miss L2cache.

Cycles with misses on L3 CYC ACTy.CYCLES L3 MISS Cycles while there are outstanding loads that
miss L3 cache.

Cycles with outstanding
loads

CYC ACTy.CYCLES MEM ANY Cycles while there are outstanding loads in the
memory subsystem.

FP Scalar Double FPAI RET� .SCALAR DOUBLE Double-precision scalar FP instructions.
FP Scalar Single FPAI RET� .SCALAR SINGLE Single-precision scalar FP instructions.
FP 128-bit SIMD Double FP AI RET� .128B PACKED DOUBLE Double-precision 128-bit packed FP instruc-

tions.
FP 128-bit SIMD Single FP AI RET� .128B PACKED SINGLE Single-precision 128-bit packed FP instructions.
FP 256-bit SIMD Double FP AI RET� .256B PACKED DOUBLE Double-precision 256-bit packed FP instruc-

tions.
FP 256-bit SIMD Single FP AI RET� .256B PACKED SINGLE Single-precision 256-bit packed FP instructions.
FP 512-bit SIMD Double FP AI RET� .512B PACKED DOUBLE Double-precision 512-bit packed FP instruc-

tions.
FP 512-bit SIMD Single FP AI RET� .512B PACKED SINGLE Single-precision 512-bit packed FP instructions.
y – CYCLE ACTIVITY; * – FP ARITH INST RETIRED

To measure the energy consumption on Intel CPUs, it is necessary to rely on the RAPL
interface.6 As shown in Table 2, RAPL supports different energy domains, each with their speci�c
counter, that can provide different insights about the ef�ciency of sparse computations. The
power plane 0 (PP0) counter allows to measure the energy from the processor cores and LLC,
while the counter from the package domain encapsulates the entire processor package. While the

6Intel, “and IA- 32 Architectures. Software Developer's Manual. Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C”.

Spar City 4

package counter is available in all types of Intel processors, the PP0 domain is usually speci�c
to client platforms. The power plane 1 (PP1) domain targets the integrated processor graphics
in-built on the chip package of the client processors, while the DRAM domain considers the
energy consumption of the main memory. Finally, the platform energy counter considers the
energy of the cores, integrated graphic, system agent and other hardware components, and it is
only available in Skylake or more recent architectures. Its availability also depends on the BIOS
support. In case it is not supported in the tested hardware, the counter returns the value of zero.

Table 2 Counters supported by RAPL interface.

Metric Hardware Counters Description
Power Plane 0 Energy MSR PP0 ENERGY STATUS Energy of processor cores and LLC.
Package Energy MSRPKG ENERGY STATUS Energy of entire processor package.
Power Plane 1 Energy MSR PP1 ENERGY STATUS Energy of integrated processor graphics (only

client processors).
DRAM Energy MSR DRAM ENERGY STATUS Energy of DRAM (only server processors).
Platform Energy MSR PLATFORM ENERGY COUNTER Energy of entire platform (only if BIOS and ven-

dor hardware supports it).

2.2 software events
Along with hardware events, internal kernel information (vmstat, iostat, disk, network), and
process level metrics are also provided by the operating system, e.g., see Figure1 (taken from 7).
When a (sparse) application runs on a cluster, all of these components can resemble a bottleneck.
Hence, by monitoring this information along with the hardware events, spotting performance
issues of an application can be possible. Some of these metrics are provided in Table3.

Table 3 Some selected metrics from kernel performance metric counters which could relate to sparse application
performance.

Source and Description Metric Metric Description

/proc
Kernel statistics

kernel.all.intr Context switches metric from /proc/stat
kernel.all.pressure.cpu.some.total Total time processes stalled for CPU resources
kernel.all.pressure.memory.some.total Total time processes stalled for memory re-

sources
kernel.all.pressure.memory.full.total Total time when all tasks stall on memory re-

sources
kernel.all.pressure.io.some.total Total time processes stalled for IO resources
kernel.percpu.interrupts.PMI Performance monitoring interrupts for each

core
kernel.percpu.interrupts.TRM Thermal event interrupts for each core
kernel.percpu.interrupts.line* Number of interrupts caused by each IO device

/proc/meminfo
System memory statistics

mem.util.used Used system memory
mem.util.free Free system memory
mem.util.directMap 4k Amount of memory that is directly mapped in

4kB pages
mem.util.directMap 2M Amount of memory that is directly mapped in

2MB pages
mem.util.directMap 1G Amount of memory that is directly mapped in

1GB pages
swap.pagesin Pages read from swap devices due to demand

for physical memory

7Brendan Gregg. 2021. url : https://brendangregg.com/linuxperf.html .

Spar City 5

swap.pagesout Pages written to swap devices due to demand
for physical memory

/proc/meminfo
NUMA statistics

mem.numa.util.free Per-node free memory
mem.numa.util.used Per-node used memory
mem.numa.alloc.hit Per-node count of times a task wanted alloc on

local node and succeeded
mem.numa.alloc.miss Per-node count of times a task wanted alloc on

local node but got another node
mem.numa.alloc.local node Per-node count of times a process ran on this

node and got memory on this node
mem.numa.alloc.other node Per-node count of times a process ran on this

node and got memory on another node
/proc/vmstat

Virtual memory statistics
mvy.kswapd low wmark hit quickly Count of times low watermark reached quickly
mvy.kswapd high wmark hit quickly Count of times high watermark reached quickly

/proc/net/dev
Network interface statistics

network.interface.in.bytes Network recv read bytes per network interface
network.interface.out.bytes Network send bytes per network interface

/proc/diskstats
Disk statistics

disk.dev.read Per-disk read operations
disk.dev.write Per-disk write operations
disk.dev.read merge Per-disk count of merged read requests
disk.dev.write merge Per-disk count of merged write requests

/proc/ < pid > /*
Per process statistics

proc.psinfo.ngid NUMA group identi�er
proc.psinfo.threads Number of threads
proc.psinfo.nvctxsw Number of non-voluntary context switches
proc.psinfo.processor Last CPU the process was running on
proc.psinfo.cmaj �t Count of page faults other than reclaims of all

exited children
proc.psinfo.maj �t Count of page faults other than reclaims
proc.io.wchar write(), writev() and send�le() send bytes
proc.io.rchar read(), readv() and send�le() receive bytes

y – mem.vmstat

3 profil ing tools based on hardware counters
The access to the hardware counters and the energy counters supported by the RAPL interface
on Intel devices, it is usually required to have privileged access, thus they cannot be accessed
from user space. To overcome this issue and to to ease the adoption of counters for pro�ling
applications and modeling computing systems, monitoring tools, such as, Perf, 8 PAPI,9 and
LIKWID, 10 can be used to easily con�gure and access the counters. All these tools allow to access
both the hardware counters for performance monitoring and the RAPL interface when targeting
the energy consumption of a system.

3.1 perf : performance analysis tools for linux
Perf is included in the Linux kernel and relies on a command line interface to con�gure the
hardware counters and performing the measurements. This tool not only supports hardware
counters, but also tracepoints, kprobes and uprobes for dynamic tracing. To simply pro�le the
entire execution of an application, perf statcommand must be used. Moreover, the event accounts
can also be recorded through the command perf record, which together with the commands perf

8Arnaldo Carvalho De Melo. “The new linux'perf'tools”. Slides from Linux Kongress. Vol. 18. 2010, pp. 1–42.
9Dan Terpstra et al. “Collecting performance data with PAPI-C”. Tools for High Performance Computing2009. Springer,

2010, pp. 157–173.
10J. Treibig, G. Hager, and G. Wellein. “LIKWID: A lightweight performance-oriented tool suite for x 86 multicore

environments”. Proceedings of PSTI2010, the First International Workshop on Parallel Software Tools and Tool Infrastructures.
2010.

Spar City 6

report and perf annotateallow to breakdown the measured events by process/function and/or
to annotate the application source code with the event counts. This allows to detect which
application kernels should be the focus for optimization. Besides these features, perf also allows
to print the sampled functions in real time (perf top), as well as to perform different multi-threaded
micro-benchmarks to evalute the capabilities of CPU devices (perf bench).

3.2 performance application programming interface (papi)
PAPI pro�les applications or speci�c regions of interest by manually inserting functions/mark-
ers in the application code. When using PAPI, the �rst step is to initialize the PAPI library
(PAPI library init). When targeting multi-thread applications, it is also necessary to initialize the
PAPI interface for multiple threads (PAPI threadinit). After initializing PAPI, the second step is to
select the counters to be read by each thread/core. This needs to be explicitly performed by the
programmer in the application code, through the functions PAPI createeventsetand PAPI add event
to create a event set and add counters to it. The list of events supported by the computing sys-
tem can be obtained from the executable �les papi avail and/or papi native avail. After adding
the events to measure to the event set, the counting of the hardware counters must be started
with PAPI start. After starting the counting, to pro�le speci�c application kernels, PAPI read
calls can be inserted around the region of interest to read the current values of the hardware
counters. Finally, at the end of the application code, the counting of the hardware counters
must be stopped (PAPI stop) and the envent set cleaned (PAPI cleanupeventset) and destroyed
(PAPI destroyeventset).

3.3 l ikwid performance tools
LIKWID is another alternative to Perf and PAPI. Similar to Perf, it allows to pro�le the entire
application execution by using a command line interface (likwid-perfctr). This interface is also
responsible to select and con�gure the hardware counters. However, LIKWID also includes a
mechanism to pro�le speci�c regions of the application, by relying on the marker API. The �rst
step is to initialize the LIKWID marker interface (LIKWID MARKER INIT). In the case of multi-
thread applications, it is also necessary to call the function LIKWID MARKER THREADINIT .
After this initialization step, the LIKWID MARKER START and LIKWID MARKER STOP must
be placed before and after the region of interest. To reduce the overhead when performing the
measurements, the user can attribute names to the different regions and register them before
starting the measurements (LIKWID MARKER REGISTER). Finally, at the end of the application
the LIKWID marker interface must be closed (LIKWID MARKER CLOSE). With this approach,
the values obtained for each hardware event and in each core are presented in a command line
output.

4 communication profil ing and monitoring tools
Communication is one of the main factor that prevents parallel applications from scaling to large
number of cores. In the context of multi-threaded applications, data movement or communication
takes place in forms of cache line transfers across multiple cores within or across sockets. Because
of the criticality of communication in the performance of an application, in the Spar City project,
we leverage communication monitoring tools developed by the KU partner. These tools are

Spar City 7

namely ComDetective, 11 ReuseTracker12 and ComScribe.13 All these three tools are publicly
available on the ParCoreLab git repository: https://github.com/ParCoreLab/ParCoreTools

4.1 comdetective : a communication monitoring tool
Inter-thread data movement is a vital performance indicator in multi-core systems. To detect
inter-thread communications in multi-threaded codes with low time and memory overheads,
the KU partner previously developed ComDetective, 14 a tool that captures inter-thread commu-
nications in the forms of communication matrices. The tool employs hardware performance
counters (PMUs) to sample memory-access events and uses hardware debug registers to capture
communicating pairs of threads. A PMU is a special on-chip hardware in each CPU core that can
be used to monitor hardware events, such as memory loads, stores etc, or software events like
page faults, while a debug register is a special register that can be programmed to monitor any
memory address and trap the next access to that memory address.

ComDetective works by sampling memory accesses in each application thread using PMUs
and publishing the sampled memory addresses on a global data structure called BulletinBoard. In
addition to publishing sampled addresses to BulletinBoard, each sampling thread also attempts
to detect inter-thread communication by comparing the cache lines of its sampled addresses with
the cache lines of the addresses published on BulletinBoard. If there is a matching cache line, a
communication is detected, otherwise, one address in BulletinBoard posted by another thread is
randomly selected and its cache line is monitored by the debug registers in the currently sampling
thread to trap a communication.

In addition to detecting communications, ComDetective also differentiates the communica-
tions into true sharing and false sharing. This can be useful for the application users if they
would like to eliminate or reduce false sharing in their codes by making data structure changes.
Furthermore, it also attributes the detected communications to their locations in source code and
the data objects involved in the communications.

This tool works in both Intel and AMD architectures. To ensure precision of event sampling,
it leverages Processor Event-Based Sampling (PEBS)15 in Intel and Instruction-Based Sampling
(IBS)16 in AMD. The group's work on extending the tool to ARM-based multicore architectures is
in progress.

The KU partner veri�ed the accuracy of ComDetective using several microbenchmarks 17 that
have known ground truths. These benchmarks were designed to have known ground truths
for total number of communications, ratio of false sharing to true sharing, and distribution
of communication volume across communicating thread pairs. The communications captured

11Muhammad Aditya Sasongko et al. “ComDetective: A Lightweight Communication Detection Tool for Threads”.
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Denver,
Colorado: Association for Computing Machinery, 2019. doi : 10.1145/3295500.3356214. url : https://doi.org/10.
1145/3295500.3356214.

12Muhammad Aditya Sasongko et al. “ReuseTracker: Fast Yet Accurate Multicore Reuse Distance Analyzer”. ACM
Trans. Archit. Code Optim.19.1 (2021). issn : 1544-3566. doi : 10.1145/3484199. url : https://doi.org/10.1145/
3484199.

13Palwisha Akhtar et al. “ComScribe: Identifying Intra-node GPU Communication”. 2021. doi : 10.1007/978-3-
030-71058-3_10.

14Sasongko et al., “ComDetective: A Lightweight Communication Detection Tool for Threads”.
15Intel. Intel Microarchitecture Codename Nehalem Performance Monitoring Unit Programming Guide. https://software.

intel.com/sites/default/files/m/5/2/c/f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf . 2010.
16Paul J. Drongowski. Instruction-Based Sampling: A New Performance Analysis Technique for AMD Family10h Processors.

https://pdfs.semanticscholar.org/5219/4b43b8385ce39b2b08ecd409c753e0efafe5.pdf . 2007.
17Sasongko et al., “ComDetective: A Lightweight Communication Detection Tool for Threads”.

Spar City 8

(a) LULESH (b) LULESH True Sharing (c) LULESH False Sharing

Figure 2 Communication matrices of LULESH (Left to Right: All, True and False Sharing). Darker color
indicates more communication.

by ComDetective from these benchmarks are close to these ground truths. Moreover, the KU
partner also evaluated the time and memory overheads of ComDetective by running it on twelve
PARSEC18 and six CORAL benchmarks 19 20 21 22 23 24 25in an Intel Broadwell machine. Figure 2
shows the communication matrices from LULESH, one of the CORAL benchmarks. Its average
overheads are1.30� for runtime and 1.27� for memory overheads under 500K sampling interval,
which are much lower than the overheads of cycle-accurate simulators 26 27 28and prior-art code
instrumentation tools 29 30.31

4.2 reusetracker : a reuse distance analysis tool
Data locality is another important performance indicator in multi-core machines with multi-level
caches. One widely used metric that measures data locality is reuse distance, which calculates
the number of unique memory locations accessed between two memory accesses to a particular

18C. Bienia et al. “The PARSEC benchmark suite: Characterization and architectural implications”. 2008International
Conference on Parallel Architectures and Compilation Techniques (PACT). 2008, pp. 72–81.

19AMG. Parallel Algebraic Multigrid Solver. https://github.com/LLNL/AMG . 2017.
20Ulrike Meier Yang. “Parallel Algebraic Multigrid Methods High Performance Preconditioner”. Numerical Solution

of Partial Differential Equations on Parallel Computers, LNCS51 (2006), pp. 209–233.
21Quicksilver. A proxy app for the Monte Carlo Transport Code, Mercury. https://github.com/LLNL/Quicksilver .
22PENNANT. Unstructured mesh hydrodynamics for advanced architectures. https://github.com/lanl/PENNANT . 2016.
23miniFE. MiniFE Finite Element Mini-Application. https://github.com/Mantevo/miniFE .
24VPIC. Vector Particle-In-Cell (VPIC) Project. https://github.com/lanl/vpic .
25LULESH 2.0. Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH). https://github.com/

LLNL/LULESH.
26Nick Barrow-Williams, Christian Fensch, and Simon Moore. “A communication characterisation of Splash- 2 and

Parsec”. IEEE International Symposium on Workload Characterization,2009. IISWC 2009. 2009.
27P.S. Magnusson et al. “Simics: A full system simulation platform”. Computer35.2 (2002), pp. 50–58.
28Eduardo Henrique Molina da Cruz et al. “Using Memory Access Traces to Map Threads and Data on Hierarchical

Multi-core Platforms”. 2011IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW). 2011.

29Matthias Diener et al. “Characterizing communication and page usage of parallel applications for thread and data
mapping”. Performance Evaluation88-89 (2015), pp. 18–36.

30Arya Mazaheri, Felix Wolf, and Ali Jannesari. “Characterizing Loop-Level Communication Patterns in Shared
Memory Applications”. Proceedings of the2015 44th International Conference on Parallel Processing. Beijing, China, 2015.
doi : 10.1109/ICPP.2015.85 .

31Arya Mazaheri, Felix Wolf, and Ali Jannesari. “Unveiling Thread Communication Bottlenecks Using Hardware-
Independent Metrics”. Proceedings of the47th International Conference on Parallel Processing. Eugene, OR, USA: ACM,
2018, 6:1–6:10. doi : 10.1145/3225058.3225142. url : http://doi.acm.org/10.1145/3225058.3225142 .

Spar City 9

memory location. To pro�le reuse distance in multi-threaded code with low runtime and memory
overheads, the KU partner developed ReuseTracker.32 This pro�ling tool leverages PMUs to sam-
ple memory accesses and uses debug registers to detect either areuseor a cache line invalidation
of the sampled memory location. ReuseTracker works in Intel by leveraging PEBS and in AMD
by leveraging IBS. Similar to ComDetective, its extension to ARM-based multicore architectures
is in progress.

ReuseTracker employs two different algorithms that pro�le reuse distance in private caches
and shared caches, respectively. To pro�le reuse distance in private caches, each thread that
encounters a PMU sample arms a debug register in every CPU core in the machine. If the next
debug register trap occurs in the same CPU core as the PMU sample, a reuse in private cache is
detected, otherwise, if the next trap happens in another core, a cache line invalidation at private
cache level is detected. When a reuse is detected, the number of memory accesses between the
PMU sample and the debug register trap is recorded into a time reuse distance histogram, which
is then converted into stack reuse distance histogram using the method in. 33 In the algorithm
that pro�les reuse distance in shared caches, each thread that faces a PMU sample arms a debug
register in every other core in the machine. A reuse in the same shared cache is detected if the
next trap happens in another core that shares the same socket, and a cache line invalidation at
shared cache level is detected when the next trap occurs in another core located in another socket.
When a reuse at shared cache level is detected, the number of memory accesses in all cores that
share the same socket is recorded in the time reuse distance histogram.

To evaluate the accuracy of ReuseTracker, the KU partner developed a microbenchmark that
can be con�gured to generate a variety of reuse distance patterns. The private cache pro�ling
algorithm has been evaluated on this microbenchmark, and its accuracy is 92% in an Intel Skylake
machine under 100K sampling interval. The overheads of this tool have also been evaluated by
running it on ten PARSEC benchmarks with 2.9� runtime and 2.8� memory overheads under
the same sampling interval, which are much lower than the overheads of the other open source
reuse distance analysis tools.34

4.3 comscribe : inter -gpu communication detection tool
Communication monitoring among GPUs can help reason about scalability issues and perfor-
mance divergence between different implementations of the same application. ComScribe 35 is a
tool that can identify communication among all GPU-GPU and CPU-GPU pairs in a single-node
multi-GPU system. It can monitor data movement induced by both Peer-to-Peer (P 2P) primitives
of CUDA and collective communication primitives of NVIDIA's Collective Communication Li-
brary (NCCL). It employs the NVIDIA's pro�ling tool nvprof and Unix dynamic linker utility to
monitor P 2P communication and collective communication respectively to gather the necessary
information. Then, the collected information is processed to quantify communication among
GPUs and generate the communication matrices. In the Spar City project, we plan to leverage
this tool to monitor inter-GPU communication in multi-GPU applications with this tool.

32Sasongko et al., “ReuseTracker: Fast Yet Accurate Multicore Reuse Distance Analyzer”.
33Xipeng Shen, Jonathan Shaw, and Brian Meeker. “Accurate Approximation of Locality from Time Distance

Histograms”. 2006.
34Xiaoya Xiang et al. “HOTL: A Higher Order Theory of Locality”. SIGARCH Comput. Archit. News41.1 (2013),

pp. 343–356. issn : 0163-5964. doi : 10.1145/2490301.2451153. url : https://doi.org/10.1145/2490301.2451153 ;
dcompiler/loca: Program locality analysis tools. https://github.com/dcompiler/loca .

35Akhtar et al., “ComScribe: Identifying Intra-node GPU Communication”.

Spar City 10

5 system-level monitoring tools
In order to systematically collect and store information from performance metric sources, several
monitoring tools are developed and widely used in the literature. These tools aim to provide a
wider picture on the system performance via monitoring multiple components of and building
relations among them. These systems are used to facilitate intelligent job placement, run-time
workload partitioning/adaptation and HPC hardware procurement planning. 36 Some of these
tools are: LDMS,37 Performance Co-Pilot,38 Ganglia,39 Nagios, HPC-Toolkit 40 and PerfAugur. 41

Among them Ganglia is proven to be scalable up to 2000nodes but is used for general system
monitoring, requires considerable number of installation dependencies, targets larger collection
intervals (10s of seconds to10s of minutes) and uses an aging tool for storage. Nagios also targets
larger collection intervals (10s of seconds to10s of minutes) and mainly used for failure alerts.
PerfAugur is used to trace the cause of a system anomaly by �nding common attributes that
predicate an anomaly.42 HPCToolkit is a suite of tools which can provide accurate measurements
of program performance on a wide variety of systems from single host computers to large
clusters. However it involves a binary analysis and re-compilation of the target code. LDMS
and Performance Co-Pilot are metric collection, transport and storage systems which can be
con�gured to sample every performance metric counter on hardware and kernel including RAPL,
PAPI and perf interfaces. Moreover they support frequent and variable sampling rate on these
performance metrics with negligible overhead and without requirement of recompile or source
code instrumentation. This enables real time monitoring of HPC systems in cluster level, node
level and process level in order to provide multiple-aspect insight of application performance.

5.1 l ightweight distributed metric service (ldms)
LDMS is part of OVIS, a suite of HPC monitoring, analysis and feedback tools which is jointly
developed by Sandia National Laboratories and Open Grid Computing. LDMS is based on
daemons called ldmsd which can run on either sampler or aggregator modes. A sampler ldmsd
daemon is created by running and con�guring sampling plugins which sample PMUs. Each
sampling plugin combines a speci�c set of data into a single metric set. An aggregator ldmsd
daemon is created by running and ldsmd and con�guring aggregator plugings. Each aggregator
collect metric sets from samplers and/or other aggregators. Higher level aggregators can listen
many lower level aggregators, aggregate and streams data into storage. LDMS can store sampled
performance data on CSV �les, D-SOS and In�uxDB. Increasing with number of sampled metrics,
LDMS causes very little overhead on the system performance. It causes � 0.01% CPU utilization,

36James M. Brandt, Thomas Tucker, and Ann C. Gentile. Lightweight Distributed Metric Service (LDMS): Run-time
Resource Utilization Monitoring.English. Tech. rep. SAND2013-6521C. Sandia National Lab. (SNL-CA), Livermore, CA
(United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States), 2013. url : https://www.osti.
gov/biblio/1106397 (visited on 09/ 27/ 2021).

37Anthony Michael Agelastos et al. The Lightweight Distributed Metric Service: A Scalable Infrastructure for Continuous
Monitoring of Large Scale Computing Systems and Applications.English. Tech. rep. SAND2014-19868C. Sandia National
Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States),
2014. doi : 10.1109/SC.2014.18 . url : https://www.osti.gov/biblio/1315267 (visited on 09/ 27/ 2021).

38Red-Hat. url : https://pcp.io/ .
39Ganglia. Ganglia monitoring system. url : http://ganglia.sourceforge.net/ .
40L. Adhianto et al. “HPCTOOLKIT: Tools for Performance Analysis of Optimized Parallel Programs

Http://Hpctoolkit.Org”. Concurr. Comput.: Pract. Exper.22.6 (2010), pp. 685–701. issn : 1532-0626.
41Sudip Roy et al. “PerfAugur: Robust diagnostics for performance anomalies in cloud services”. 2015IEEE 31st

International Conference on Data Engineering. 2015, pp. 1167–1178. doi : 10.1109/ICDE.2015.7113365 .
42Agelastos et al., The Lightweight Distributed Metric Service.

Spar City 11

< 2MB memory, < 4MB �lesystem and 4KB network overhead for � 200 metrics @1 second
intervals. 43

Although it has been widely used in the literature, and it works well under certain circum-
stances, LDMS is mostly used by a strictly related group, lacks documentation and still under
development. Therefore it's hard to deploy, develop and maintain.

5.2 performance co -pilot
Performance Co-Pilot, which was initially released at 1995by SCI and currently being developed
by Red-Hat is a system performance analysis toolkit. PCP contains two types of components:
PCP collectors and PCP monitors. PCP collectors are responsible for collecting and extracting
performance data from various sources. This sources could be PMCs, PMUs or application
performance logs. PCP collectors consists of two components; Performance Metrics Domain Agent
(PMDA) and Performance Metric Collector Daemon (PMCD). PMDAs connects to performance
sources and sample their values, then reports these values to PMCD. There currently 75 PMDAs
available and apart from existing PMDAs, new PMDAs could be developed to connect any wanted
performance metrics source using PMAPI library. To be able to report metrics from a host machine,
there must be a PMCD which listen and control all PMDAs and answer requests of monitoring
applications. Monitoring tools are used to display, manipulate and store performance metrics
extracted from PMCDs. PMCDs can collect performance metrics from remote hosts or answer to
remote monitoring tools in a distributed setting. Some of the PCP monitoring tools are; PMIE, an
inference engine which could be used to automate system management tasks via predicate-action
rules. PMLOGGER, archive manager which enables subsets of collected performance metrics to
be replayed. PMCHART, a visualization tool which can generate on the �y charts from collected
metrics. PMREP, a performance metrics reporter with highly customizable output format. PCP
can export collected metrics to several databases such as; Elasticsearch, Graphite, In�uxDB, Redis
and Apache Spark.

5.3 grafana : open source visualization tool
Grafana is an open source visualization tool which provides dynamic dashboards, ad-hoc queries
and alerting functions on time-series data. Since it's initial release at 2014, Grafana quickly
become industry standard and reached 10M+ global users recently. Due to it's massive userbase,
Grafana provides support for every popular database and provides a wide variety of visualization
methods. Due to it's strong recognition and �exibility, Grafana is chosen as Digital SuperTwin
front-end interface during development in order to prove usability of design concepts for Digital
SuperTwin's own interface.

5.4 measurement overhead
The overhead for a default con�guration of Performance Co-Pilot is reported in Table 4. Since
the default con�gurations of monitoring tools focused on overall system health and component
state, main effort is put on recon�guration of sampler processes to sample performance centric
metricsets and development of custom samplers. On top of that, to be able to implement and test
customized solutions for monitoring and to report reproducible results, a freely available research
medium is required. To this end, virtual clusters using docker containers as compute node, which
can perform MPI communications and managed by SLURM is realized. But since this framework
is still under development, results acquired from this setting, along with the custom samplers and

43Agelastos et al., The Lightweight Distributed Metric Service.

Spar City 12

	Introduction
	Objectives of This Deliverable
	Work Performed
	Deviations and Counter Measures
	Resources

	Performance and energy monitoring events
	Hardware counters
	Software events

	Profiling tools based on hardware counters
	Perf: Performance analysis tools for Linux
	Performance Application Programming Interface (PAPI)
	LIKWID performance tools

	Communication profiling and monitoring tools
	ComDetective: A Communication Monitoring Tool
	ReuseTracker: A Reuse Distance Analysis Tool
	ComScribe: Inter-GPU Communication Detection Tool

	System-level Monitoring Tools
	Lightweight Distributed Metric Service (LDMS)
	Performance Co-Pilot
	Grafana: Open source visualization tool
	Measurement Overhead

	Dynamic instrumentation and cache partitioning tools
	Intel SDE, Pin and GTPin
	Reuse Distance Analysis and Cache Partitioning for the ARM A64FX CPU

	Vendor-specific frameworks for application analysis
	Intel Vtune
	Microarchitectual General Exploration for Intel CPUs
	GPU offload analysis

	Intel Advisor
	Profiling and instrumentation on NVIDIA GPUs
	Tools for visual and programmatic analyses on Graphcore IPUs
	Analysing Poplar Profiles
	Tracing Applications

	Cache simulation for irregular memory traffic
	Cache tracing for sparse matrix-vector multiplication
	Cache tracing results

	Conclusions

