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1 introduction

The SparCity project is funded by EuroHPC JU (the European High Performance Computing
Joint Undertaking) under the 2019 call of Extreme Scale Computing and Data Driven Technologies
for research and innovation actions. SparCity aims to create a supercomputing framework
that will provide efficient algorithms and coherent tools specifically designed for maximizing
the performance and energy efficiency of sparse computations on emerging High Performance
Computing (HPC) systems, while also opening up new usage areas for sparse computations in
data analytics and deep learning.

Sparse computations are commonly found at the heart of many important applications, but
at the same time it is challenging to achieve high performance when performing the sparse
computations. SparCity delivers a coherent collection of innovative algorithms and tools for
enabling both high efficiency of sparse computations on emerging hardware platforms. More
specifically, the objectives of the project are:

• to develop a comprehensive application and data characterization mechanism for sparse
computation based on the state-of-the-art analytical and machine-learning-based perfor-
mance and energy models,

• to develop advanced node-level static and dynamic code optimizations designed for mas-
sive and heterogeneous parallel architectures with complex memory hierarchy for sparse
computation,

• to devise topology-aware partitioning algorithms and communication optimizations to boost
the efficiency of system-level parallelism,

• to create digital SuperTwins of supercomputers to evaluate and simulate what-if hardware
scenarios,

• to demonstrate the effectiveness and usability of the SparCity framework by enhancing
the computing scale and energy efficiency of challenging real-life applications.

• to deliver a robust, well-supported and documented SparCity framework into the hands
of computational scientists, data analysts, and deep learning end-users from industry and
academia.

1.1 objectives of this deliverable

The objective of this deliverable is to document the ongoing research developments regarding the
sparse computation-aware performance and energy-efficiency modeling of device architectures
along with analysis/profiling tools. These models aim at encapsulating necessary information
regarding the performance and energy-efficiency upper-bounds that are realistically exploitable
by different classes of sparse applications, thus they can be used to guide optimizations and
detect the potential execution bottlenecks with respect to compute and memory resources (e.g.,
caches and DRAM). In addition, communication modeling and analysis tools aim at identifying
horizontal and vertical data movement within the memory hierarchy. The data movement profil-
ing information enables us to optimize communication, data placement and cache partitioning.
Finally, the developed performance, communication and energy models provide feedback to the
Digital Twin to construct unified models.
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1.2 work performed

In this deliverable, an extensive analysis, validation and characterization of different sparse com-
putation kernels was performed in the state-of-the-art insightful models based on the roofline
principles, in particular, in the Original Roofline Model (ORM) and Cache-aware Roofline Model
(CARM). For this purpose, sparse matrices from SuiteSparse Matrix Collection with different
sparsity patterns and characteristics were evaluated, across a set of custom-build algorithms
and standard implementations from vendor-specific high-performance libraries, including Sparse
Matrix-Vector Multiplication (SpMV) and Sparse Matrix-Matrix Multiplication (SpMM) from Intel
MKL. A novel ORM analysis based on best- and worst case memory traffic estimates is also
derived. A methodology based on micro-benchmarking is proposed to improve the CARM in-
sightfulness by scaling the performance upper-bounds according to the characteristics of the
sparse kernels. The proposed model is experimentally evaluated by considering different reorder-
ing algorithms applied to diverse sparse matrices in single- and multi-core execution scenarios.

Furthermore, to address the main drawbacks of the SoA roofline models, the Mansard Roofline
Model (MaRM) is proposed, which uncovers a minimum set of architectural features that must be
considered to provide insightful, but yet accurate and realistic, modeling of performance upper
bounds for modern processors. This model encapsulates the retirement constraints due to the
amount of retirement slots, Reorder-Buffer and Physical Register File sizes, and it is employed to
characterize SpMV and SpMM kernels from Intel MKL, as well as to guide the optimization of
the second-order epistasis detection algorithm (use-case application in the scope of the SparCity

project). The obtained results show that the characterization in the proposed models is in line
with the Intel TopDown VTune analysis.

Moreover, the roofline modeling principles are also applied when uncovering the performance
and energy-efficiency upper-bounds of the Graphcore Intelligent Processing Unit (IPU). For this
purpose, different strategies are considered to model different phases of the IPU execution,
i.e., in-tile execution and inter-tile communication (exchange). The proposed in-tile execution
roofline model is experimentally validated through micro-benhmarking, which shows complete
matching between the theoretical model and the experimental data in all modeled domains, i.e.,
performance, power consumption and energy-efficiency.

In terms of data movement tools, the inter-thread communication detection tool is extended
to AMD x86 architectures and tested on a number of benchmarks for its accuracy, sensitivity to
sampling interval and time/memory overheads. Moreover, cache partitioning is applied to an
iterative conjugate gradient method based on a CSR SpMV kernel to reduce L2 cache misses.
The initial results show that even though the matrices that are already reordered for optimal
cache reuse can still benefit from cache partitioning to further reduce cache misses. Lastly, all the
performance, power and communication models developed in this WP are communicated to the
WP4 team to influence the design of performance metrics in Digital Twin.

1.3 deviations and counter measures

There was no deviation from the work plan.

1.4 resources

As also envisioned in the project proposal, it is expected that the herein elaborated modeling
approaches will undergo further improvements and developments, which will be reported in
subsequent deliverables (D4.2, D1.4 and D1.5), as well as maintained and regularly updated on
the respective SparCity Github repositories.
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2 sparse-aware roofline modeling and analysis

The State-of-the-Art (SoA) roofline models, such as, Original Roofline Model (ORM)1 and its hier-
archical variant,2 Integrated Roofline Model (IRM),3 and Cache-Aware Roofline Model (CARM)4

are widely used for application characterization and optimization, especially when considering
sparse computations.5 The popularity of these models arise from their ability to relate application
behavior and device upper-bounds in a simple and insightful way. These models focus on the
peak compute performance and maximum achievable memory bandwidth, which provides a
visualization of the main bottlenecks that hinder application execution, and its potential to fully
explore system capabilities.

In particular, CARM characterizes performance upper-bounds for a given architecture, with
respect to the arithmetic intensity (AI), i.e., the amount of performed computations over the total
amount of requested data (bytes).6 By considering that memory operations and computations can
be simultaneously executed in modern out-of-order processors, the overall execution is limited
either by the time to perform computations or by the time to serve memory requests. Hence,
CARM contains three distinct regions: memory bound region (slanted roof), compute bound
region (horizontal roof) and a “mixed” region, where applications can be both memory and/or
compute bound. For each memory level, the slanted roof intersects the horizontal roof at a single
point, i.e., the ridge point.7

As it can be observed in Figure 1a, CARM memory region includes all memory levels (L1, L2,
L3 and DRAM) in a single plot, each limited by its corresponding slanted roof. The maximum
attainable performance in this region is limited by the L1 cache bandwidth, while the remaining
levels offer a lower attainable performance, due to the reduction in the sustainable bandwidth
when data is fetched further away from the core. The right part of the model, delimited by the
maximum FP performance (Fp), represents the compute bound region.

When characterizing the application behavior, CARM decouples the bottlenecks limiting the
application execution, allowing to select suitable optimization techniques to be applied. For
example, if an application is at the left side of the ridge point (kernel “M” in Figure 1a), its
execution is limited by memory accesses and can be improved by applying memory-related
optimizations. On the other hand, an application positioned at the right side of the ridge point
(kernel “C” in Figure 1a) is limited by arithmetic operations and its execution can be improved by

1Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: An Insightful Visual Performance Model
for Multicore Architectures”. Commun. ACM 52.4 (2009), pp. 65–76. issn: 0001-0782. doi: 10.1145/1498765.1498785.

2Douglas Doerfler et al. “Applying the roofline performance model to the Intel Xeon Phi Knights Landing processor”.
Proceedings of the International Conference on High Performance Computing. Springer. 2016, pp. 339–353.

3Tuomas Koskela et al. “A novel multi-level integrated Roofline model approach for performance characterization”.
Proceedings of the International Conference on High Performance Computing. Springer. 2018, pp. 226–245.

4Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. “Cache-aware Roofline model: Upgrading the loft”. IEEE
Computer Architecture Letters 13.1 (2013), pp. 21–24; Diogo Marques et al. “Performance analysis with Cache-Aware
Roofline model in Intel Advisor”. Proceedings of the International Conference on High Performance Computing & Simulation.
IEEE. 2017, pp. 898–907.

5N. Srivastava et al. “MatRaptor: A Sparse-Sparse Matrix Multiplication Accelerator Based on Row-Wise Product”.
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 2020, pp. 766–780. doi: 10.1109/
MICRO50266.2020.00068; N. Srivastava et al. “Tensaurus: A Versatile Accelerator for Mixed Sparse-Dense Tensor
Computations”. 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). 2020, pp. 689–
702. doi: 10.1109/HPCA47549.2020.00062; Jiajia Li et al. “A Sparse Tensor Benchmark Suite for CPUs and GPUs”.
2020 IEEE International Symposium on Workload Characterization (IISWC). IEEE. 2020, pp. 193–204.

6Ilic, Pratas, and Sousa, “Cache-aware Roofline model: Upgrading the loft”.
7Ilic, Pratas, and Sousa, “Cache-aware Roofline model: Upgrading the loft”; Aleksandar Ilic, Frederico Pratas, and

Leonel Sousa. “Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-Cores”. IEEE
Transactions on Computers 66.1 (2016), pp. 52–58.
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Figure 1 State-of-the-art Roofline Modeling approaches.

code vectorization or parallelization. Finally, an application placed in the “mixed” region (kernel
“K” in Figure 1a) may be limited by computations and/or memory transfers, depending on their
instruction mix and on the memory levels exercised by the application.

Moreover, by plotting a vertical line at the AI of the application, as shown in Figure 1a, it
is possible to uncover the main sources of performance degradation. The intersections of this
vertical line and the CARM roofs represent the potential execution bottlenecks that might limit
application performance. The intersections right above and below the application point are
identified as the main sources of performance degradation and should be the main target of
optimization. In the example of Figure 1a, the main bottlenecks of the application are accesses to
L3 and DRAM memories (see black dot in Figure 1a).

Compared to ORM and IRM, while the compute region is evaluated equally in all three
models, their modeling of the upper-bounds in the memory subsystem differs. Hierarchical
ORM (Figure 1b) considers the bandwidth between memory levels, and its AI corresponds to
the amount of performed computations over the amount of data requested by memory level
“x” (bytesx).8 Due to this property, a single application (kernel) is represented by “x” points
in Hierarchical ORM, one for each memory level. Similar to CARM, the memory region of
the Hierarchical ORM contains several roofs, each one representing a memory level. The main
execution bottleneck corresponds to the minimum of the intersections between the AIs of the
“x” points with their correspondent roofs (e.g., DRAM bandwidth in Figure 1b). Finally, IRM
(Figure 1c) uses the modeling approach of CARM in the memory subsystem i.e., it considers
the sustainable bandwidth seen from the core for each memory level, while adopting ORM
methodology for application characterization and bottleneck detection (e.g., in Figure 1c, DRAM
is the main execution bottleneck).

8Williams, Waterman, and Patterson, “Roofline: An Insightful Visual Performance Model for Multicore Architec-
tures”.
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2.1 analysis of sparse kernels in original roofline model

Performance models such as the Original Roofline Model (ORM)9 are often used to describe
the upper limits of achievable performance for computational kernels on a particular hardware.
While such models are simple and effective, they sometimes fail to predict the performance that
is observed in practice, especially in the case of kernels that are dominated by irregular memory
accesses. More detailed performance models are therefore being explored in the context of the
SparCity project, precisely because irregular memory access patterns are an inherent feature
of the kind of sparse computations that SparCity is aimed at. One such detailed performance
model has been recently developed based on a cache tracing approach.10 This has so far been
applied to better understand the performance of irregular kernels, in particular different variants
of Sparse Matrix Vector Multiplication (SpMV).

This section briefly describes a common sparse matrix-vector multiplication kernel and an
ORM analysis based on best- and worst case memory traffic estimates. The shortcomings of this
simple model illustrates the need for more detailed approaches.

2.1.1 sparse matrix-vector multiplication

A commonly used sparse matrix-vector multiplication kernel based on the compressed sparse
row (CSR) storage format is shown in Algorithm 1. This kernel computes y← y + Ax, or

yi ← yi +

ri+1−1∑
k=ri

akxjk , for i = 0, 1, . . . ,M− 1, (1)

for an M-by-N matrix A =
(
ai,j
)M−1,N−1

i,j=0
, a source vector x =

(
xj
)N−1

j=0
and a destination vector

y = (yi)
M−1

i=0
. The matrix A is assumed to be given by K nonzero entries (ik, jk,ak)

K−1

k=0
, such

that ik and jk are row and column offsets, respectively, of the nonzero matrix value ak := aik,jk .
Moreover, K ≪ M×N due to the matrix being sparse. It is also assumed that the nonzeros are
sorted in ascending order of their row offsets, ik. The row pointer ri designates the position of
the first nonzero of the ith row and ri+1 − 1 points to the last nonzero of the ith row.

The kernel in Algorithm 1 consists of two nested loops, where the outer loop runs over the
rows of the matrix and the inner loop iterates over the nonzeros of the current row. Two floating
point operations, one multiplication and one addition, are performed for each matrix nonzero.
While the matrix nonzero values (a) and column indices (colidx) are accessed in a streaming
fashion, accesses to the source vector x are irregular and unpredictable. Finally, OpenMP is used
to partition the rows of the matrix and distribute the work among threads in a shared memory
parallel fashion.

2.1.2 original roofline model analysis

Algorithm 1 appears straightforward to analyse using the ORM (see also Vuduc et al.11 for a
similar analysis of an SpMV kernel that incorporates a register blocking optimisation). However,

9Williams, Waterman, and Patterson, “Roofline: An Insightful Visual Performance Model for Multicore Architec-
tures”.

10James D. Trotter, Johannes Langguth, and Xing Cai. “Cache simulation for irregular memory traffic on multi-core
CPUs: Case study on performance models for sparse matrix–vector multiplication”. Journal of Parallel and Distributed
Computing 144 (2020), pp. 189–205. issn: 0743-7315. doi: 10.1016/j.jpdc.2020.05.020.

11Richard Vuduc et al. “Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply”. Proceedings of
the 2002 ACM/IEEE Conference on Supercomputing. Baltimore, Maryland: IEEE Computer Society Press, 2002, pp. 1–35.
doi: 10.1109/SC.2002.10025.
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1 void csrspmv(

2 int num_rows , int * rowptr , int * colidx ,

3 double * a, double * x, double * y)

4 {

5 #pragma omp for

6 for (int i = 0; i < num_rows; i++) {

7 double z = 0.0;

8 for (int k = rowptr[i]; k < rowptr[i+1]; k++)

9 z += a[k] * x[colidx[k]];

10 y[i] += z;

11 }

12 }

Algorithm 1: Matrix-vector multiplication for a sparse matrix in compressed sparse row (CSR)
storage format. OpenMP is used to partition the rows of the matrix and distribute the work
among threads in a shared memory parallel fashion.

we will soon see that the irregular and data dependent accesses to the source vector x make
matters more complicated, since they cannot be predicted ahead of time. On the surface, every
iteration of the inner loop reads 20 bytes from memory (line 9), 4 bytes due to the column indices
(colidx) and 8 bytes each due to the values of a and x, whereas every iteration of the outer loop
writes 8 bytes to memory (line 10) for the destination vector y. For simplicity, we ignore writes
to the destination vector, which anyway become negligible as long as the average number of
nonzeros per row is large enough. Thus, concentrating on the inner loop, which performs two
floating-point operations per iteration, the arithmetic intensity is 1

10
flop/B.

As an example, we consider a dual socket system with two Intel Xeon Platinum 8168 CPUs,
each with 24 cores operating at 2.5 GHz, and a theoretical memory bandwidth of 256 GB/s. An
ORM for this system is shown in Figure 2. In this example, the arithmetic intensity of Algorithm 1

implies an upper bound of 160 Gflop/s, assuming that the 20 bytes needed during each iteration
of the inner loop are loaded in 1.5 cycles.12 However, this is only possible with an already warm
cache and a matrix with no more than about 2 700 nonzeros per CPU core (i.e., fewer than 130 000

nonzeros in total). Otherwise, the matrix cannot fit in the 32 KiB L1 cache of each core. Moreover,
any matrix with more than about 5.8 million nonzeros will not even fit in the 66 MiB shared L3

cache and must therefore be read entirely from main memory. Although, since the L3 cache in
the Skylake-X microarchitecture is non-inclusive,13 it is arguably more appropriate to consider
the 114 MiB combined size of the L2 and L3 caches instead, meaning that matrices with more
than 10 million nonzeros will not fit.

In the case of cold caches or a sufficiently large matrix, 12 bytes must be read from main
memory for each nonzero to obtain its value and column index. If we assume for now that
the source vector resides entirely in cache,14 the arithmetic intensity becomes 1

6
flop/B. With a

theoretical memory bandwidth of 256 GB/s, the upper limit on performance becomes 42.7 Gflop/s.

12The Skylake-X microarchitecture can serve two loads per cycle from the L1 cache.
13Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 248966-040. Intel Corporation,

2018, Ch. 2.
14Even in an ideal scenario, where the entire 1.5 MiB L1 cache is dedicated to storing the source vector, it will only

fit in the cache for matrices with up to 196 608 columns. Similarly, the source vector cannot fit entirely in the L3 cache
for matrices with more than 8.7 million columns. Within the combined size of the L2 and L3 caches, the source vector
will not fit for matrices with more than 14.9 million columns.
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Figure 2 Original roofline model for sparse matrix-vector multiplication with the CSR storage format (see
Algorithm 1) on a dual socket Intel Xeon Platinum 8168 (Skylake-X) multicore CPU system.

Note that this estimate is somewhat optimistic, since the actual memory bandwidth achieved in
practice, as measured, for instance, by the STREAM benchmark,15 is commonly found to be only
about 70–80 % of the theoretical maximum. A more conservative estimate would therefore be an
upper performance limit of about 30 Gflop/s.

Now, even if the matrix is too large or the cache is cold, the source vector x may still benefit
from reusing cached data. Whether or not the source vector values are reused in practice depends
on details of the caching algorithm, as well as the irregular memory access pattern induced by
the column indices of the matrix nonzeros and the order in which the nonzeros are arranged.
The best case, as described above, yields an arithmetic intensity of 1

6
flop/B. But the worst case

occurs when every access to the source vector must bring an entire cache line of 64 bytes from
main memory, even though only a single 8-byte value is needed from the cache line in question.
As a result, a total of 76 bytes must be read from main memory for every matrix nonzero. The
arithmetic intensity is reduced to 1

38
flop/B, and the performance is limited to merely 6.74 Gflop/s,

as shown in Figure 2.
The ratio between the best and worst case performance described above is 38

6
≈ 6.3 times. In

15John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance Computers. Department of Com-
puter Science School of Engineering and Applied Science, University of Virginia. 2013. url: https://www.cs.

virginia.edu/stream/.
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Figure 4 Sparsity patterns of a few sparse matrices from the SuiteSparse Matrix Collection.

reality, the performance of SpMV kernels, such as Algorithm 1, varies greatly depending on the
matrix sparsity pattern (i.e., the location of the matrix nonzeros). This is illustrated by the spread
in performance shown in Figure 3 for a selection of large, sparse matrices from the SuiteSparse
Matrix Collection.16 The performance is below 10 Gflop/s for almost a third of the matrices,
but for the remaining matrices, the performance varies considerably, ranging all the way from
10 Gflop/s up to about 160 Gflop/s. To also demonstrate the diversity in the underlying sparsity
patterns, Figure 4 shows the sparsity patterns of a few matrices that were used.

2.2 sparse carm: improving roofline insightfulness for

sparse computations

Cache-Aware Roofline Model (CARM)17 provides insightful indication of performance upper-
bounds of a micro-architecture with multiple levels in the memory hierarchy, which allows for
visual application characterization, optimization and bottleneck detection. Similarly to other SoA
roofline models, CARM is predominantly architecture-centric, i.e. it mostly considers architecture
parameters (such as the maximum attainable memory bandwidth and peak compute throughput)

16Timothy Davis and Yifan Hu. “The University of Florida Sparse Matrix Collection”. ACM Transactions on Mathe-
matical Software (TOMS) 38.1 (2011), pp. 1–25. issn: 1557-7295. doi: 10.1145/2049662.2049663.

17Ilic, Pratas, and Sousa, “Cache-aware Roofline model: Upgrading the loft”.
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when modeling the performance upper-bounds of a micro-architecture.
However, these performance maximums can only be attained by a small set of highly opti-

mized and regular applications, or by carefully crafted assembly micro-benchmarks. In practice,
the realistically attainable performance maximums do not only depend on the architecture ca-
pabilities, but also on the characteristics of the application (being executed on that architecture)
and its ability to exploit those architecture maximums. For example, a naı̈ve and non-vectorized
SpMV kernel will never reached the maximum attainable performance that corresponds to the
use of vector instructions.

To cope with these challenges and improve CARM insightfulness in these scenarios, we advo-
cate herein a practical approach for CARM construction based on adCARM,18 which specifically
takes into account the application characteristics when determining the attainable maximums
on a given architecture. The developed CARM-based model should also be able to adapt the
characteristics of the input matrix, which can lead to an irregular memory access pattern, provok-
ing performance degradation. This can cause even larger discrepancy between the application
behavior and the modelled rooflines. Moreover, the kernel used for computations and the sparse
matrix storage format must also be considered. With this aim, this work proposes a micro-
benchmarking methodology to construct CARM for SpMV kernels, by relying on synthetic dense
matrices stored in sparse formats, in order to obtain the maximum attainable bandwidth of the
systems when performing SpMV computations. By using dense matrices, the micro-benchmarks
sequentially access all positions in the vector, which indeed maximizes the memory bandwidth
of a system. Finally, while the presented evaluation focuses on the MKL Single-Precision SpMV
kernel (mkl sparse s mv) and in the CSR format, the developed methodology can be extended to
other kernels and formats.

Experimental results of this work were obtained in a Linux CentOS 7.5.1804 platform, with
a eight-core Intel i7-7820X processor running at the fixed frequency of 3.60GHz, and 32GB of
DRAM. All computation was performed using the Single-Precision sequential implementation of
SpMV in the Intel® oneAPI Math Kernel Library19 and hyper-threading and cache prefetching
were disabled during testing.

2.2.1 adapting carm to spmv

The first step to achieve a CARM-based approach for SpMV kernels is to determine which matrix
dimensions correspond to the maximum attainable bandwidth of the micro-architecture when
performing MKL SpMV. As the L1 cache is the memory level that guarantees maximum transfer
rate between the core and the memory hierarchy, this preliminary test evaluates the performance
of the MKL SpMV kernel with different sizes of involved data structures, such that the input
sparse matrix (A, stored in CSR format), input vector (X) and output vector (Y) always fit in L1

cache. This evaluation was performed with a single-thread, where the single precision SpMV
computation was executed multiple times to guarantee a total of at least 250ms of kernel runtime.

Preliminary bandwidth testing of several dense matrix dimensions, seen in Figure 5, shows
that the matrices 20x64 and 32x64 as the dense parameters capable of delivering the highest
performance when data structures involved in SpMV always fit in L1 cache. Considering the
steady-state nature of these tests (i.e., SpMV kernel performed multiple times on warm caches),
the streamed data structures in the SpMV kernel such as the CSR arrays (row pointer, column
indices and non-zero values) and output Y vector, are only able to have reuse in a specific cache

18Diogo Marques et al. “Application-driven Cache-Aware Roofline Model”. Future Generation Computer Systems
107 (2020), pp. 257–273. issn: 0167-739X. doi: https://doi.org/10.1016/j.future.2020.01.044. url: https:

//www.sciencedirect.com/science/article/pii/S0167739X19309586.
19Intel Corporation. Intel® oneAPI Math Kernel Library. Intel. url: https://software.intel.com/en-us/mkl.
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Figure 5 Dense Preliminary Tests for Single Threaded MKL SpMV.

level if the total memory occupied does not exceed the capacity of that cache level, while the
input X vector, for a small column size (of 64), maintains locality at L1 cache level.

However, in order to extend this testing methodology to the other cache levels, while keeping
the reuse of X vector in L1 cache, the amount of rows in the dense matrix (A) is increased while
maintaining 64 columns, expanding the memory occupied by the data structures. It is also
possible to extend this methodology to evaluate the scenarios when the reuse of X vector occurs
beyond the L1 cache, since the X vector locality depends on whether a specific cache level is able
to fully store it. For these dense tests, the previous test can be repeated by selecting more columns
for A matrix (which result in increasing the amount of elements in X vector), thus exceeding the
cache capacity to store the X vector, in order to test the attainable bandwidths for other cache
levels when the X vector locality is in the L2 and L3 cache or DRAM.

Applying this testing methodology to the entire memory hierarchy, under single-thread exe-
cution leads to the bandwidth curves presented in Figure 6. As it can be observed, when X vector
fits inside L1 cache (dense matrix with 64 columns), the bandwidth reduces as the size of the
remaining structures surpass the size of each memory level. For example, when all structures fit
in L1 cache, a maximum bandwidth around 23.3GB/s is achieved, while 19.82GB/s is attained for
L2 cache accesses, i.e., when all other data structures (except the X vector) surpass the L1 cache
size. Moreover, when considering different sizes of X, L2 bandwidth reduction also occurs when
X fits in L2 cache (8704 columns), instead of L1 cache. Between the two execution scenarios, the
bandwidth drops from 19.8Gb/s (when X fits in L1) to 17.8GB/s (when X fits in L2), confirming
that the higher bandwidth is obtained when X elements are reused from the memory level closer
to the core. On the other hand, for L3 cache and DRAM, the attainable bandwidth is similar for
all the different X vector sizes, since in these memory levels, the latency in accessing other data
structures is high enough to not be affected by the locality of X.

This micro-benchmarking principle is also adopted for multi-threaded execution, where each
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Figure 7 Bandwidth Curve for Multi Threaded MKL SpMV (8 cores).

thread shares the accesses to the sparse matrix A, while X and Y vectors are private to each thread.
As it can be observed in Figure 7, the bandwidth in a multi-threaded (8 cores) environment shows
similar behaviour as the single-threaded counterpart, with the memory bandwidth decreasing as
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(a) Single Threaded CARM Adapted to MKL SpMV. (b) Multi Threaded CARM Adapted to MKL SpMV.

Figure 8 SpMV Adapted Cache Aware Roofline Model.

the accesses are served by memory levels further away from the core. As previously elaborated,
the locality of X also affects the attainable L2 bandwidth, resulting in the bandwidth reduction
of around 9% when X fits in L2 cache when compared to the scenario when X fits in L1 cache.
Compared to the single-core tests, the bandwidth increases for all memory levels, achieving
a maximum bandwidth of around 168, 158, 61.5, and 16.5 GB/s, for L1, L2, L3 and DRAM,
respectively.

From the bandwidth values obtained in the tests presented in Figures 6 and 7, novel roofline
models can be derived that better represent the performance upper-bounds of the SpMV kernel.
The proposed roofline models are presented in Figures 8a and 8b, for single- and multi-threaded
(8 cores) execution scenarios, respectively. Compared to the CARM roofs that correspond to scalar
single-precision memory transfers (i.e., the instructions used by MKL single-precision SpMV), the
proposed rooflines have a lower L1 performance upper-bound given that the kernel is not only
a streaming benchmark of the CSR and Y arrays but also contains the indirect access of the X
vector, and these dependencies degrade the performance when access to the data is faster given
the locality at the L1 cache level. When considering the proposed L2 rooflines, the performance is
higher than the CARM roofs given that the locality of the X vector is preserved at the L1 while in
the original roofs, streaming tests would have locality only in L2 cache. L3 and DRAM rooflines
show little differences in performance.

2.2.2 impact of sparse matrix characteristics in sparse carm

Code in Listing 1 presents a naı̈ve implementation of the SpMV computation kernel applied to a
sparse matrix A represented in a CSR format, where vector vals contains the value of each row-
major stored non-zero element, cols contains the column coordinate of each element, and pointerB
and pointerE store the index of the first and last non-zero element in each row, respectively. Based
on this implementation, the total number of loads and stores executed based on the characteristic
of the matrix can be found in Table 1, and multiplying the sum of instructions by βi (average
number of bytes transfered per instruction), the total amount of bytes transferred to the core is
obtained. Knowing that a SpMV kernel performs 2×NNZ floating-point operations, with NNZ
being the number of non-zero elements in the sparse matrix, the Arithmetic Intensity (AI) (as
perceived by CARM) can be derived from equations 3 and 4.
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Memory Accesses
Array Num LD Num ST

y Nrows Nrows

pointerB Nrows —
pointerE Nrows —

vals Nnnz —
cols Nnnz —

X Nnnz —

AI =
Floating Point Operations
Memory Accessed (bytes)

(2)

AI =
2×Nnnz

βi × (3×Nnnz + 4×Nrows)
(3)

AI =
2

βi × (3 + 4× Nrows

Nnnz
)

(4)

AI Limits
Minimum AI( Nnnz

Nrows
= 1) 2

βi×7

Maximum AI( Nnnz

Nrows
= ∞) 2

βi×3

Table 1 Arithmetic Intensity of Naive SpMV.

for ( i n t i = 0 ; i < n rows ; i ++){
y [ i ] = tmp ;
for ( i n t j = pointerB [ i ] ; j < pointerE [ i ] ; j ++){

tmp += vals [ j ] * X[ c o l s [ j ] ] ;
}
y [ i ] = tmp ;

}
Listing 1: Naı̈ve SpMV Kernel

From these equations, it is possible to conclude that differently from most applications, CARM
AI of SpMV depends on the characteristics of the input matrix, in particular, the number of non-
zeros per row (NNZ/Nrows). In the case where there are no empty rows, the minimum AI
corresponds to NNZ/Nrows = 1, while maximum AI occurs when NNZ/Nrows →∞. Moreover,
since the performance in the memory region of the roofline models depends in the AI, the
dependency between the AI and the characteristics of the input matrix indicates that different
matrices have distinct performance upper-bounds.

This range of AI can be experimentally verified by relying on dense synthetic matrices with
different dimensions. Figure 9 presents this experimental evaluation, where highlighted in grey is
the AI range attainable using the MKL SpMV in single precision (βi = 4). As it can be observed,
the minimum AI corresponds to the dense matrices with 2 columns (AI ≈ 0.14152). As the
number of non-zero elements per row increases, the AI shifts to the right, approaching and
stabilizing at values close to the theoretical maximum, as it can be observed for matrices with
more than 8704 columns (AI ≈ 0.16666).

2.2.3 improving spmv performance by reordering

Given the memory access pattern of SpMV, the performance gains only occur if the accesses to
vector X are improved, e.g., X elements are reused in caches and/or accesses to X are coalesced.
To achieve this, reordering techniques can be applied to the sparse matrix, in order to provide a
more regular access pattern to X with improved data reuse. In order to evaluate the maximum
performance gains that can be obtained with reordering, this work proposes a strategy that
involves the creation of pairs of synthetic matrices. One of the matrices corresponds to the worst
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Figure 9 AI Range Tests in MKL SpMV.

case, which aims at minimizing the reuse of X values as much as possible. On the other extreme,
the second matrix mimics the best case execution scenario, where the locality on X is maximized. In
each pair, the best case scenario must correspond to a specific permutation of rows and columns
of the worst case scenario.

In order to maximize the reuse of elements in the X vector, the matrix for the best case scenario
contains several dense blocks in the diagonal, each with p× q elements. This organization aims
at guaranteeing the maximum data locality and reuse of X at the level of each block. In particular,
when processing a dense block, the q elements of X are fetched when processing the first row,
and subsequently reused for each p row processed. To allow for maximum reuse, the value of
q is selected such that the part of X accessed in each block fits in L1 cache, and it is a multiple
of cache line size. With this structure for the best matrix, the worst case matrix must contains q

non-zero elements per row, and p non-zero elements per column, in order to be transformed into
the best case through row and column permutation.

An example of the worst case matrix creation is presented in Figure 10, which considers blocks
of a size 1× 64. To avoid reuse of elements within a cache line, each of the 64 non-zero elements
(in a single row) must be separated by at least a cache line size (e.g., 16 elements in single
precision). This fact requires choosing a column size that allows for the even distribution of the
elements (e.g., 4096 columns allows that each non-zero element is separated by 4096/64 = 64

positions). To also avoid cache line re-utilization between rows when accessing X vector, each
non-zero element of the next row is shifted by one cache line to the right. This is repeated until
all the cache-lines are exhausted, i.e., the maximum amount of cache lines that can be allocated
between two consecutive elements in a single row. For example, when considering 4096 columns
and 64 positions between each non-zero in a single row, a total of 4 rows are needed to repeat
this pattern (since 64 positions correspond to 4 cache lines, i.e. 64/16 = 4). This distribution can
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Figure 10 Worst Matrix Example for 1x64 blocks

be observed in Figure 10 within the first block of 4 rows described as “Increasing position by cache
line Pattern”.

This pattern for block of rows is repeated for the next group of 4× 64 non-zero elements,
where the position of each non-zero corresponds to the one from the previous block of rows, but
incremented by one position. This distribution can be observed in Figure 10 being repeated for
the next 15 blocks of rows described as “15 x Increasing position by cache line Pattern”. Each of
the blocks of 4 rows increase the position of each non-zero element by one until all elements of
the X vector are accessed by the worst case matrix. This allows for the reordering of this non-zero
distribution into a pattern as shown in Figure 11a. Having this distribution being repeated 32

times enables the reordering into the best case matrix with the diagonal of 32x64 blocks (see
Figure 11b).

Using this strategy, for a specific dense block dimension of the best case matrix (i.e., p×q), the
only other parameter to choose is the amount of columns, which should preferably be divisible
by the column size of the blocks for even distribution in the worst case matrix. The NNZ and row
size of the matrix depends on the amount of blocks that fit in the best case matrix diagonal with
the chosen block dimensions and column size.

Figure 12 presents the evaluation of several best and worst case matrices in the Sparse CARM,
for single threaded workloads with single precision data. Since according to the preliminary
testing presented in Figure 5 the maximum bandwidth is achieved for a block size of 32×64, this
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(a) Resulting Best Matrix with 1x64 blocks (b) Best Matrix if Worst Matrix for 1x64 blocks repeats
pattern 32 times.

Figure 11 Resulting best matrices depending on Worst matrix layout.

Figure 12 ST-Best case and Worst case Matrices for 32x64 blocks

experimental evaluation is performed with p = 32 and q = 64 (Figure 11b).
As it can be observed in Figure 12, the groups of matrices that fit in DRAM (14MbX) and

L3 (64KbX) memory levels reveal that significant performance improvements can be achieved
between the worst and the best cases. However, the group fitting in L2 cache (4KbX), which also
are the smallest matrices that are able to be created for a block of 32×64 using this strategy, show
little to no performance improvement. This effect occurs due to data re-utilization between the
rows that have the non-zero elements only one column apart from each other, reducing the gap
in cache reuse between the worse and best case matrices.

To further verify the obtained results, the Intel VTune Top-Down breakdown is presented in
Figure 13. When analyzing the first level of the Intel VTune Top-Down results presented in Figure

SparCity 16



(a) Top Down VTune Analysis of ST Best Worst Matrices (b) Memory Bound VTune Analysis of ST Best Worst
Matrices

Figure 13 VTune Analysis of Synthetic Worst/Best Matrices in single-thread.

Figure 14 MT-Best case and Worst case Matrices for 32x64 blocks

13a, it is possible to verify that there is an increase in the retiring component from the worst
case scenario to the best case matrix. Moreover, the memory bound breakdown of Top-Down
(Figure 13b) shows an increase of the L3 Bound component for the 14MbX best case matrix, and
the appearance of the L1 Bound component for the 64KbX matrix. Thus, it is possible to conclude
that the performance improvement achieved by reordering the worst matrices arises from better
cache utilization, due to a more regular access pattern.

This strategy is also applied to a multi-threaded (8 cores) scenario, by performing static row
partitioning of the input sparse matrix among threads, with shared access to X and Y vector. As it
can be observed in Figure 14, similar to the single-thread test, there is a clear improvement in the
SpMV performance when reordering the worst case matrix, especially for L3 cache (208KbX) and

SparCity 17



(a) Top Down VTune Analysis of MT Best Worst Matrices (b) Memory Bound VTune Analysis of MT Best Worst
Matrices

Figure 15 VTune Analysis of Synthetic Worst/Best Matrices in multi-thread.

DRAM (14MbX). For example, from worst case to the best case, a maximum speedup of around
2.10x for DRAM matrices, and 1.39x for L3 matrices can be expected. With this row partitioning,
each thread will only transfer 1/8th of the matrix, which will change the locality of some of the
matrix groups. This effect can be observed for the 64KbX matrices, which were located below
the L3 bandwidth roof for the single-threaded tests, while in the multi-threaded tests they are
positioned below the L2 roofline, thus indicating a maximum speedup of 1.28x for matrices that
have locality in this cache level.

The increase in the performance is once more due to better locality and regularity in the
memory accesses to vector X. As observed in the first level of Top-down analysis (see Figure 15a),
there is an increase in the retiring component for all tested matrices when moving from the worst
case to the best case execution scenarios, indicating that after reordering the core is being more
utilized. In the memory bound breakdown (Figure 15b), it is also possible to observe the effects of
reordering in the accesses to the memory hierarchy. In the case of the 4KbX and 64KbX matrices
(that aim at exercising the reordering upper-bounds for L1 and L2 caches, respectively), there is
an increase in the L1 bound component after reordering, thus leading to increased performance.
In the case of the larger matrices, i.e., 208KbX and 14MbX, the contribution of the L3 bound
increases greatly after the reordering, while the DRAM bound component reduces. In all four
test cases, both Top-Down and Sparse CARM show that reordering the input matrix can provide
significant speedups by just improving the accesses to vector X, leading to higher utilization of
components closer to the core.

In order to represent the possible speedups for matrices with locality focused on each specific
cache-level, the ranges of performance gain obtained with the best and worse case matrices for
both single and multi-threaded scenarios are highlighted in grey in Figures 12 and 14, respectively.

Given that the previous evaluation with synthetic matrices has shown the potential to achieve
significant speedups in SpMV by reordering the input sparse matrix, this work also provides an
evaluation of the MKL SpMV performance when using real matrices reordered with state-of-the-
art algorithms, for single and multi-threaded execution. The considered reordering algorithms
are Reverse Cuthill-McKee (RCM),20 Approximate Minimum Degree (AMD),21 Nested Dissection
(ND),22 a partial implementation of GrayRO,23 and on two matrices, the reordering algorithms

20E. Cuthill and J. McKee. “Reducing the Bandwidth of Sparse Symmetric Matrices”. Association for Computing
Machinery, 1969.

21Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. “An Approximate Minimum Degree Ordering Algorithm”.
SIAM Journal on Matrix Analysis and Applications 17.4 (1996), pp. 886–905.

22Alan George. “Nested Dissection of a Regular Finite Element Mesh”. SIAM Journal on Numerical Analysis 10.2
(1973), pp. 345–363.

23Haoran Zhao et al. “Exploring Better Speculation and Data Locality in Sparse Matrix-Vector Multiplication on
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Matrix Name Rows Cols NNZ Size (KBytes)
Freescale1 3428755 3428755 17052626 ≈ 173400

patents 3774768 3774768 14970767 ≈ 161190

torso1 116158 116158 8516500 ≈ 67900

Stanford 281903 281903 2312497 ≈ 21370

ns3Da 20414 20414 1679599 ≈ 13360

poisson3Db 85623 85623 2374949 ≈ 19560

sme3Db 29067 29067 2081063 ≈ 16600

mixtank new 29957 29957 1990919 ≈ 15900

ss 1652780 1652780 34753577 ≈ 290880

Fullchip 2987012 2987012 26621983 ≈ 242990

wb-edu 9845725 9845725 57156537 ≈ 561920

Table 2 Real matrices retrieved from SuiteSparse.

Figure 16 Reordering Algorithms applied to Matrices

included in the Patoh partition library:24 cutnet and connectivity. A set of eleven matrices from
SuiteSparse are considered for evaluation, as presented in Table 2. This set of matrices are real,
general and non-complex, and have a diverse number of rows, columns and non-zero elements,
covering a wide range of execution scenarios. Examples of how different reordering algorithms
affect the disposition of the non-zero elements can be seen in Figure 16, e.g. in the matrices where
RCM was used, it can be seen how the non-zero elements are more distributed along the diagonal
and this reduction in the spread of the elements may provide performance benefits due to more
coalesced accesses to the X vector.

Figure 17 presents the characterization of the matrices with different reordering algorithms in
the sparse CARM for single-threaded execution. As it can be observed, the considered reordering
methods do not guarantee performance improvements for all matrices. In fact, several reordered
matrices suffer from performance reduction (e.g. Fullchip RCM and Freescale RCM), while other
have small gains in performance. For example, Fullchip attained a speedup of 1.08x with ND,
while RCM provided 1.17x speedup for Stanford. Further insights can be obtained through the
Intel VTune Top-Down. As it can be observed with the Top-Down method for Freescale1, Stanford
and FullChip (Figure 18), Freescale1 reordering with ND and Standford reordered with RCM

Intel Xeon”. 2020 IEEE 38th International Conference on Computer Design (ICCD). 2020.
24Ümit V Çatalyürek and Cevdet Aykanat. “Patoh (partitioning tool for hypergraphs)”. Encyclopedia of parallel

computing. Springer, 2011, pp. 1479–1487.
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Figure 17 ST Real and Reordered Matrices

(a) Top Down VTune Analysis of ST Real Matrices (b) Memory Bound VTune Analysis of ST Real Matrices

Figure 18 VTune Analysis of some real and reordered matrices in single-thread.

have an increase in the retiring contribution, and a reduction in the memory bound component.
This indicates that the bottlenecks after reordering are slightly more related to the core, which
explains their performance increase of 8% for Freescale1 and 17% for Stanford. On the other
hand, FullChip with RCM has a reduction in the retiring component together with an increase in
the memory bound and core bound, which leads to a performance decrease of 11%.

SparCity 20



Figure 19 MT Real and Reordered Matrices

The same matrices and reordering algorithms were also tested in multi-threaded fashion
for 8 threads total, with each thread being assigned a partition based on equal distribution of
the rows with shared access to the X and Y vector. The representation of these matrices in
the multi-threaded SpMV adapted CARM (see Figure 19) show a similar trend to the single-
thread experiments, since the reordering algorithms can either provide speedups or slowdowns
depending on the matrix. Moreover, in multi-thread execution is also necessary to take into
account the impact of load balancing in the performance of the application. Since the experiments
proposed in this work focused on an even partition of the rows between threads, the number of
non-zero elements performance by each thread may differ, resulting in data imbalance, degrading
performance. By observing the average core utilization of each matrix, presented in Figure 21, it is
possible to observe that reordering algorithms may result in an increase of the load balancing (all
8 cores are being utilized), while in other in may provoke serious imbalance issues. For example,
matrix Poisson3Db has an increase of the average core utilization from 3.6 to 6.2 when using
RCM. On the other hand, Torso1 has a reduction from 5.3 to 1.35 in the core utilization when
using RCM. This explains their characterization in the Sparse CARM, since Poisson3Db has a
speedup of 1.6x and torso1 a slowdown of 0.27x.

All these effects can also be observed in the Top-Down method, presented in Figure 20.
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(a) Top Down VTune Analysis of MT Real Matrices (b) Memory Bound VTune Analysis of MT Real Matrices

Figure 20 VTune Analysis of some real and reordered matrices in multi-thread.

For example, applying AMD to Freescale1, results in performance gain, although no noticeable
changes occur in the Top-Down metrics. Thus, the speedup in this matrix is mainly due to
the improved load balancing attained after reordering, as the average core utilization increases
from 6.31 to 7.95. In contrast, reordering Stanford with ND algorithm improves the locality of the
accesses to X vector, indicated by the increasing in the retiring and L3 bound components. Despite
ND causing load imbalance (average core utilization drops from 5.92 to 4.7), the performance of
this matrix still improves after reordering. For Mixtank new matrix, applying RCM deteriorates
locality of accesses to X vector, as can be seen by the increase of the memory bound component
and L1 bound indication, which still results in a performance gain, due to improvement of load
balancing from 3.92 to 6.87. Analysing the effect of RCM applied to torso1, locality of X is greatly
improved as the memory bound component lowers significantly while retiring increases, and
observing the changes in memory bound analysis, the DRAM bound indication reduces with
increased L1 and L3 components. Despite this, as previously mentioned, torso1 reduces the core
utilization to 1.35 when applied RCM reordering algorithm, resulting in slowdown due to inferior
resource utilization.

Highlighted in grey in Figures 17 and 19 are the performance improvement intervals expected
when reordering is applied, which are obtained from the synthetic worse and best case matrices
by considering different matrix sizes that guarantee locality at a specific cache level. As it
can be observed in Figure 17, the majority of the real matrices in the single-threaded scenario
are positioned above the DRAM roof and below the performance improvement interval for
the L3 cache, which indicates that tested matrices are only partially exploiting locality in L3

cache, while still being limited by the DRAM accesses. In the multi-threaded scenario (see
Figure 19), some matrices are positioned within the performance intervals for both L3 cache
and DRAM. However, one can also observe that some matrices are placed below the highlighted
performance improvement interval, e.g. RCM, ND and Gray reordering of torso1 matrix are
positioned below the DRAM interval. Besides the potential poor data reuse, in these cases,
the sparse CARM characterization also suggests the load balancing issues, which prevents the
computation performed on the reordered matrix to exploit the performance limits corresponding
to the 8 cores execution.

Observing analysed results on reordering as a performance improvement method for SpMV,
synthetic best and worst case matrices are able to represent possible performance gains depend-
ing on the memory locality. While multi-threaded testing exhibits higher performance gains
compared to single-threaded, when utilizing real matrices to tests these margins, load balancing
proves to be an impediment in correlating improved locality through reordering and performance
optimization, as the former can also affect how balanced the workload is split among working
threads. Future work on this subject will focus on ways to represent load balancing in CARM
for multi-threaded tests as well as the usage of partitioning techniques combined with reordering
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Figure 21 Average Core Utilization for Multi-threaded testing

algorithms for a more clear analysis on how performance is impacted by changes in cache locality
without load balancing being a factor.

2.3 mansard roofline model: sparse kernels analysis

When modeling the performance upper-bounds, SoA roofline models25 may oversimplify the
back-end of the micro-architectures by just focusing on a subset of functional units and the
maximum attainable bandwidth of different memory hierarchy levels. As such, those models do
not consider other hardware components that may limit the performance in any Out-of-Order
(OoO) processor, especially the ones related to the retirement of instructions, such as, number
of Retirement Slots (RS), Reorder Buffer (ROB) and Physical Register File (PRF). Instead, these
models evaluate the performance upper-bounds by only considering the isolated performance
limits of the different hardware resources, thus giving the illusion of infinite retirement and
OoO windows. Moreover, when concurrently executing non-memory and memory instructions,
the limited capacities of ROB and PRF can constraint the number of in-flight memory requests,
preventing applications from achieving maximum memory bandwidth and increasing the impact
of memory latency, especially when accessing the “slower” memory levels. This can hinder the
ability of roofline models to provide accurate characterization of applications that suffer from
latency issues. This is the case of several sparse kernels, that due to their irregular memory
patterns are highly likely to have bottlenecks related to the latency of Last Level Cache (LLC) and
DRAM.

2.3.1 mansard roofline model

To address the main drawbacks of the SoA roofline models, the Mansard Roofline Model
(MaRM)26 considers all the instructions retired by an application, representing performance
as Instructions Retired per Cycle (IPC). Since MaRM uses the instruction domain instead of the
operations domain, its AI differs from standard roofline models. In MaRM, the AI is defined as
the number of non-memory instructions (INM) over the number of memory instructions (IM).
Thus, the ridge point of memory level ’y’ (Ry), i.e., the point where memory transfers and compu-
tations are completely overlapped in time, is represented as the performance of the non-memory
instructions (IPCNM) over the maximum sustainable bandwidth of memory level ’y’ (IPCy

M,Max),
where y∈{L1,L2, . . . ,LLC,DRAM}.

For representing performance as IPC, it is indispensable to incorporate the retirement limits

25Williams, Waterman, and Patterson, “Roofline: An Insightful Visual Performance Model for Multicore Architec-
tures”; Ilic, Pratas, and Sousa, “Cache-aware Roofline model: Upgrading the loft”.

26Diogo Marques, Aleksandar Ilic, and Leonel Sousa. “Mansard Roofline Model: Reinforcing the Accuracy of the
Roofs”. ACM Trans. Model. Perform. Eval. Comput. Syst. 6.2 (2021). issn: 2376-3639. doi: 10.1145/3475866. url:
https://doi.org/10.1145/3475866.
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Figure 22 Execution scenarios for different application types.

of OoO Central Processing Units (CPUs). Due to the limited number of retirement slots, micro-
architectures can only retire a limited number of instructions per cycle. Hence, the maximum
attainable performance (Py

a(AI)) is limited by the maximum dispatch rate (DM) of the micro-
architecture such that

Py
a(AI) ⩽ DM, (5)

where DM was 4 instructions per cycle in previous Intel micro-architectures, and 5 instructions
per cycle in the newest Sunny Cove core architecture.

To include the impact of the ROB in MaRM, the three execution scenarios in Figure 22 are
considered. These execution scenarios are representative of applications or application kernels
with different AIs (expressed in INM

IM
), which according to roofline approaches are able to attain

the maximum performance in different regions of the models. Scenario A fully overlaps memory
and non-memory instructions, i.e., AI = Ry; in Scenario B, applications are memory bound
(AI < Ry); and Scenario C portrays workloads in the compute bound region (AI > Ry).

At the ridge point (scenario A), the ROB has several blocks containing BM memory instruc-
tions and BNM = BM × Ry non-memory instructions. For example, an application with an
average of 2 loads per store has BM = 3 and BNM = 3Ry. Since the amount of in-flight memory
requests (IFM) corresponds to the total number of memory instructions in the ROB, IFM can be
calculated as

IFM=BM×
⌈

ROBeff

BM+BNM

⌉
= BM×

⌈
ROBeff

BM×(Ry+1)

⌉
, (6)

where ROBeff is the effective ROB size.
When accessing high latency memory levels, the blocks BM + BNM that fit in the ROB can

only start retiring after the first memory request is completed. Thus, the execution time of
the blocks BM + BNM contained in the ROB is approximately the latency of the corresponding
memory level ’y’ (Laty(IFM)), thus the performance of the micro-architecture at the ridge point
(IPCy

R(IFM)) is given by

IPC
y
R(IFM) ≈ IFM×(Ry+1)

Laty(IFM)
=

= (Ry+1)×IPCy
M(IFM),

(7)

where IPC
y
M(IFM) is the effective memory bandwidth of the level ’y’ restricted by the number

of in-flight requests. This parameter is related to Laty(IFM) through Little’s Law (IPCy
M(IFM)×
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Laty(IFM) = IFM).27

Memory bound (scenario B) and compute-bound (scenario C) applications also aim at overlap-
ping non-memory and memory instructions, but since their AI is different from Ry they consist of
two components each. The first one overlaps memory and non-memory instructions in the same
fashion as scenario A. The second component only contains instructions of a single type. Since
in scenario B, the AI is lower than Ry, there are more memory instructions than non-memory
instructions. Thus, the first component contains all non-memory instructions overlapped with
INM

Ry memory transfers, corresponding to a total of INM + INM

Ry instructions, while the second
component contains the remaining memory instructions, i.e., IM − INM

Ry . Since the overlapping
component is organized as in scenario A, it is executed at the rate of IPCy

R(IFM). In the second
component, instructions are retired at the maximum sustainable memory bandwidth (IPCy

M,Max),
since there are enough requests in the ROB to attain the maximum bandwidth. Hence, the number
of cycles necessary to execute a memory-bound application (CycB) is given by:

Cyc
y
B(AI, IFM) =

INM + INM

Ry

IPC
y
R(IFM)

+
IM − INM

Ry

IPC
y
M,Max

=

=
AI×IM(1 + 1

Ry )

IPC
y
R(IFM)

+
IM×(1 − AI

Ry )

IPC
y
M,Max

.

(8)

On the other hand, the first code portion of compute-bound applications (scenario C) contains
all memory instructions overlapped with IM × Ry non-memory instructions, i.e., a total of IM +
IM × Ry instructions, retired at the speed of IPCy

R(IFM). The second component contains INM −
IM × Ry non-memory instructions retiring at the performance of the non-memory instructions
(IPCNM). Thus, the number of cycles necessary to execute the application C (CycC) can be
calculated as:

Cyc
y
C(AI, IFM)=

IM + IM×Ry

IPC
y
R(IFM)

+
INM−IM×Ry

IPCNM
=

=
Ry×IM(1 + 1

Ry )

IPC
y
R(IFM)

+
IM×(AI

Ry − 1)

IPC
y
M,Max

.
(9)

Equations 8 and 9 are illustrated in Figure 23, each represented by their respective components,
i.e., Cyc1

B and Cyc2

B from Cyc
y
B(AI, IFM), and Cyc1

C and Cyc2

C from Cyc
y
C(AI, IFM). There is

a relation between the components of both equations. Regarding the first components, Cyc1

C

is always constant and equal to Cyc1

B at the ridge point, while the second components of the
equations have the same absolute value, i.e., |Cyc2

B| = |Cyc2

C|. Thus, from the analysis of Figure 23,

27John DC Little. “A proof for the queuing formula: L= λ W”. Operations research 9.3 (1961), pp. 383–387.
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Equations 8 and 9 can be unified in a single equation such that the application execution time
(CycApp) is given by:

CycApp=IM×

(
min(AI,Ry)(1+ 1

Ry )

IPC
y
R(IFM)

+
|AI
Ry−1|

IPC
y
M,Max

)
. (10)

Finally, from Equations 5 and 10, it is possible to derive the MaRM performance (IPCy
a(AI, IFM)):

IPCy
a(AI, IFM) = min

(
IM + INM

CycApp
,DM

)
. (11)

Figure 24 illustrates the proposed MaRM. As it can be observed, MaRM includes in the
memory-bound region the entire memory hierarchy, with each level represented by their maxi-
mum sustainable bandwidth. The compute-bound region of the model is limited by the perfor-
mance of the non-memory instructions. In contrast to SoA roofline models, the roofs in MaRM
have a format similar to a “hill”, and the memory roofs are no longer diagonal lines. Since
MaRM performance cannot surpass the maximum retirement rate of the micro-architecture, flat
regions may occur in the model, indicating areas where the application is limited by the number
of retirement slots. This is observed for the L1 roof in Figure 24. While in CARM the ridge point
corresponds to the minimum AI that allows attaining maximum performance for any memory
levels, in MaRM this does not occur for L3 and Dynamic Random Access Memory (DRAM). Due
to the high latency of these memory levels, their effective bandwidth depends on the amount
of concurrent memory requests. Thus, the ridge points of the L3 cache and DRAM do not cor-
respond to the point where maximum performance is achieved when accessing those memory
levels. In fact, the performance continues to increase beyond the ridge point due to the growing
contribution of the compute instructions, asymptotically approaching to the maximum perfor-
mance of the compute units. On the other hand, for L1 and L2 caches, the micro-architecture
is able to attain the maximum sustainable bandwidth for the entire range of AI, until reaching
the ridge point. Hence, the ridge point in MaRM inherits the properties of CARM for L1 and L2

caches.
As it can be observed in Figure 24, MaRM contains three main regions: memory region, where

application performance is limited by the memory bandwidth of each memory level; compute
region, delimited by the maximum retirement rate of the system; and mixed region (K), where the
bottlenecks can be either related to the memory accesses or the maximum achievable performance.
The bottleneck identification is performed by plotting a vertical line at the application AI. The
intersections right above and below the application dot correspond to the main sources of inef-
ficiencies. Depending on the region where the application is located, a set of optimizations can
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Figure 25 Benchmarking results for Mansard Roofline Model.

be derived to improve the execution time. In the memory region, the optimization should focus
on improving the memory accesses, while in the compute region vectorization methods can be
employed to improve application execution. In the mixed region, techniques from both memory
and compute regions might be used according to the bottlenecks identified at each optimization
phase.

In the mixed region of the roofs correspondent to the “slower” memory levels, applications
are expected to be limited by both memory bandwidth and latency. Compared to the SoA roofline
models, this property is exclusive to MaRM, and arises from the ROB impact to the bandwidth
of the memory subsystem and retirement of instructions. This effect becomes more relevant
as the AI approaches the ridge point. Moreover, since MaRM represents performance as IPC,
the model is oblivious to the vector width. For this reason, certain optimizations lead to lower
execution time with reduced IPC. For example, in current Intel micro-architectures, an application
heavily dominated by scalar Integer (INT) instructions may be closer to the retirement roof of
4RS. However, by vectorizing the INT instructions, the IPC of the application will tend to the
roofs correspondent to the retirement rate of SIMD ALU (3RS in most recent Intel CPUs).

Another scenario is the optimization of a compute-bound application dominated by Scalar in-
structions. This workload will be limited by the horizontal roof corresponding to the performance
of these instructions (for example, 2RS for Floating-Point (FP) scalar instructions), indicating that
there is no room for optimization, although the application can be easily sped-up by using vector
instructions. Thus, when a scalar application is already on top of the computational roof that
resembles the maximum throughput that its instruction mix can achieve, the recommendation is
to attempt the code vectorization.

While the drop in IPC might look counter intuitive, it increases MaRM intuition regarding
the ability to evaluate the vectorization efficiency. For example, when the throughput of scalar
ad vector instructions is equal (e.g., FP AVX512), three scenarios can occur after vectorization:
1) IPC remains constant, indicating that the vectorization attained maximum efficiency and the
execution time reduced proportionally to the vector size; 2) the IPC reduced, hinting that the
contribution of memory accesses and/or vectorization overheads increased and the vectorization
did not attain 100% efficiency; and 3) the IPC is equal to 1/vector width, corresponding to the
worst case scenario where the vectorization did not resulted in any benefit and the execution time
remains almost the same.

MaRM depends on the relation between the effective ROB size with the number of in-flight
requests and the attainable memory bandwidth. This relation can be obtained through micro-
benchmarking. Regarding the effective ROB size, the micro-benchmark is constructed such that a
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Table 3 SuiteSparse matrices used for the evaluation.

Matrix #NNZ #Rows #Columns

Bundle adj 20,207,907 513,351 513,351

bundle1 770,811 10,581 10,581

Chebyshev4 5,377,761 68,121 68,121

garon2 373,235 13,535 13,535

Lp osa 30 604,488 4,350 104,374

Lp osa 60 1,408,073 10,280 243,246

mixtank new 1,990,919 29,957 29,957

thermal2 8,580,313 1,228,045 1,228,045

nv2 37,475,646 1,453,908 1,453,908

TSOPF FS b300 c2 8,767,466 56,814 56,814

vas stokes 4M 131,577,616 4,382,246 4,382,246

significant increase in the execution time occurs at the ROB limit. The experimental evaluations of
the effective ROB size for No-Operation (NOP), 512-bit-AVX (AVX512) Fused Multipy-Add (FMA)
instructions, Advanced Vector Extension (AVX) Additions (ADD) instructions and scalar integer
additions (INT ADD) are presented in Figure 25a. Since NOPs do not use any register during
execution, the latency drastically increases approximately at the size of the ROB, i.e., 224 entries.
For AVX512 FMA instructions, the memory latency increases when there are 132 instructions per
memory access, i.e., around 78.6% of the vector PRF capacity (168 entries), while for AVX ADD
instructions, the effective ROB size is close to 145 entries. This non-ideal behavior indicates the
existence of additional bottlenecks in different components of the core pipeline. The results also
show that the effective ROB size depends on the instruction used when accessing a register file,
as it is the case of the AVX512 FMA and AVX ADD instructions. Similar scenario occurs for the
INT ADD test, with an effective ROB size around 140 entries.

To relate the effective micro-architecture bandwidth and the number of in-flight memory
requests, the developed benchmarking exploits the organization of instructions in the ROB, by
managing the number of memory requests that are simultaneously performed in this component.
Figure 25b contains the relation between in-flight memory requests and the DRAM bandwidth
for a ratio of 2 loads per 1 store (2LD/ST). As it can be observed, the curves for different memory
transfer sizes have similar characteristics. For small amount of in-flight memory requests, the
bandwidth increases in a non-linear fashion. Once the number of concurrent accesses is high
enough to fully hide the memory latency, the bandwidth converges to the maximum sustainable
bandwidth, corresponding to the dashed horizontal lines. For example, for the DRAM test with
Scalar Double-Precision (DP) instructions, the effective bandwidth for 1 in-flight group of 2LD
+ 1ST per core is around 0.5, while the maximum sustainable bandwidth is attained around 10

in-flight groups of 2LD + 1ST per core, converging to an IPC around 0.9. In the scenario, SoA
roofline models would overestimate DRAM bandwidth approximately by 2x. It is also possible
to verify that the bandwidth and the number of in-flight requests vary with the data size. For
example, for L3 test the AVX512 instructions attain the maximum sustainable bandwidth of 2.95
around 7 groups of concurrent 2LD + 1ST requests, while for Scalar SP instruction it attains an
IPC of 18.85 only when 48 groups of 2LD + 1ST are simultaneously in the ROB.
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Figure 26 Top-Down Method of MKL SpMV.

2.3.2 characterization of sparse kernels

To evaluate the capability of MaRM to provide accurate characterization of different sparse kernels,
we relied on Intel MKL28 implementation of two most commonly used sparse operations, namely:
sparse matrix-vector (SpMV) and sparse matrix-matrix (SpMM) multiplication. For this analysis,
a set of SuiteSparse29 matrices were considered, which cover a wide range of number of non-zeros,
rows and columns, as summarized in Table 3. The experimental evaluation was conducted on a
Intel Xeon 6140 Gold (SKL-X), with 18 cores. Turbo boost, prefetching and hyper-threading were
turned off during the evaluation.

The MKL SpMV and MKL SpMM kernels are characterized in MaRM and CARM, and their
insights are compared with the ones provided by Top-Down Method, obtained from Intel VTune.30

Top-Down classifies application bottlenecks into five main categories, namely: frontend (FE), bad
speculation (BS), retiring (RET), core bound (CB) and memory-bound (MB). RET and CB indicate
that the application performance is limited by the retirement rate of the micro-architecture and
port utilization. FE and BS correspond to performance penalties from instruction fetch/decoding,
and branch misprediction, respectively. MB highlights issues related to memory accesses.

sparse matrix-vector (spmv) characterization

The Top-Down results for MKL SpMV are presented in Figure 26. As it can be observed from
the first level of Top-Down (Figure 26a), all the matrices have significant contributions from
retiring, core bound and memory bound. In the case of bundle 1 and garon2, since their memory
bound component is almost negligible, these matrices are expected to be limited by hardware
components closer to the core, e.g., private caches. For the remaining matrices that have a
significant impact from memory-bound component, it is also essential to evaluate the memory
bound breakdown provided by Top-Down (Figure 26b), indicating which memory level is the
main bottleneck. From the memory breakdown, it is possible to conclude that several matrices
are mainly limited by DRAM (bundle adj, nv2, thermal2, and vas stokes 4M), while lp osa 30,
lp osa 60 and mixtank new are limited by L3 cache. Chebyshev4 and TSOPF FS b300 c2 have
bottlenecks in several memory levels, mainly from L1, L3 and DRAM.

The characterization of these matrices in MaRM and CARM is presented in Figure 27. When
comparing the hints obtained from Top-Down method and the bottlenecks pinpointed by both

28Endong Wang et al. “Intel math kernel library”. High-Performance Computing on the Intel® Xeon Phi™. Springer,
2014, pp. 167–188.

29Scott P Kolodziej et al. “The suitesparse matrix collection website interface”. Journal of Open Source Software 4.35

(2019), p. 1244.
30Ahmad Yasin. “A top-down method for performance analysis and counters architecture”. 2014 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE. 2014, pp. 35–44; Intel Corporation. VTune
Profiler. https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html. [Online;
visited June-2022].
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Figure 27 MKL SpMV in Mansard and Cache-Aware Roofline Models.

roofline models, it is possible to observe for some scenarios a better characterization in MaRM
than when using CARM. This is the case of bundle adj and thermal2, which are placed above
DRAM in MaRM, indicating bottlenecks related to DRAM but also with contributions from
components closer to the core that allow to surpass DRAM roof, which corroborates with Top-
Down. On the other hand, this matrix is below DRAM in CARM. For bundle1 and garon2, while
they have a similar characterization in both models (between L2 and L3 caches), MaRM provides
a different perspective by placing these matrices close to the retiring roof of RS = 1. This hints
that these matrices can be limited by retiring, which is according to Top-Down method. From
CARM, it is only possible to conclude that these matrices are fully limited by memory. Moreover,
while vas stokes 4M and TSOPF are below DRAM roof in CARM, these matrices are placed on
top of DRAM roof in MaRM, which is expected given the DRAM bound nature indicated by
Top-Down method. Finally, lp osa and mixtank new matrices have similar characterization in
both roofline models. In the case of lp osa matrices, according to Top-Down these matrices
should be limited by L3 cache, which does not corroborate with any of the insights provided
by both roofline models. The second-order effects behind this characterization will be further
investigated in this project.

sparse matrix-matrix (spmm) characterization

The Top-Down results for MKL SpMM are presented in Figure 28. Differently from MKL SpMV,
according to the first Top-Down level (Figure 28a), most of the matrices are limited by memory,
with small contributions from core bound. The main exceptions are bundle adj, bundle1 and
lp osa 30, which also have significant contributions related to retiring and core bound. Regarding
the memory breakdown (Figure 28b), most of the memory bound components arises from DRAM
bottlenecks, with bundle1 and TSOPF matrices having also bottlenecks that arise from L3 cache.
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Figure 28 Top-Down Method of MKL SpMM.
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Figure 29 MKL SpMM in Mansard and Cache-Aware Roofline Models.

From the characterization in Top-Down, it is expected that most of the matrices are on top
or slightly above the DRAM roof (due to the small core bound contributions). Bundle1 and
bundle adj are the only matrices that are limited by components closer to the core, such as
private caches.

As observed in the characterization with different roofline models (Figure 29), MaRM indi-
cates that bundle1 and bundle adj are limited by L3 cache, which is inline with the Top-Down
characterization (by also taking into account significant retiring and core bound components).

On the other hand, CARM places these matrices between L3 and DRAM, where bottlenecks
related to retiring and core bound are unlikely to occur. Furthermore, most of the remaining
matrices are placed below the DRAM roof in CARM, which is not expected due to its DRAM
bound nature with small contributions from core bound. These matrices are placed between L3

and DRAM roofs in MaRM, which provides a more accurate characterization of their bottlenecks
when considering the Top-Down insights.
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Figure 30 Top-Down Method of Epistasis Detection Algorithm.
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Figure 31 Characterization of the Baseline, No Phen and Nor versions of the Epistasis Detection algorithm in
MaRM and CARM.

2.3.3 case study: second-order epistasis detection

To showcase the ability of MaRM to provide accurate insights when optimizing applications, an
epistasis detection algorithm is optimized by following the hints provided by MaRM. It is worth
noting that epistasis detection represents one of the core use-case applications in the SparCity

project. This algorithm is widely used in bioinformatics to uncover the Single-Nucleotide Poly-
morphism (SNP) combination that is most likely to cause a disease or trait in a given dataset.
The baseline algorithm contains a set of bitwise operations and population count (popcount)
instructions,31 which are not commonly included in any of the INT or FP SoA roofline models.
The input dataset of this algorithm is a matrix organized with the SNPs in rows and patients
in columns. Each SNP is represented by three binary arrays, that express the genotypes. A
phenotype is also associated with each patient, indicating if the patient has the disease (case) or
does not have the disease (control). In this work, the dataset contains 10040 SNPs and 104448
patients, i.e., more than 50 million pairwise combinations of SNPs need to be evaluated.

The characterization of the baseline algorithm in MaRM and CARM is presented in Figures 31a
and 31b, respectively. In both models, the baseline algorithm is mainly limited by the L3 cache
and placed in the mixed region of the models, i.e., close to the compute roof of 1RS in MaRM and
on top of L3 cache in CARM. These insights corroborate the results in Figure 30a, obtained with
the Top-Down Method, which shows that the execution is mainly limited by memory accesses and
retiring. Since the application is memory bound and mainly limited by L3 cache, the user must
focus on memory related optimizations, such as, improving the memory access pattern or on
reducing the amount of memory accesses. This is the case of the No Phen and Nor optimizations.

31Ricardo Nobre et al. “Exploring the Binary Precision Capabilities of Tensor Cores for Epistasis Detection”. 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE. 2020, pp. 338–347.
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Figure 32 Characterization of the Block version of the Epistasis Detection algorithm in MaRM and CARM.

In the first optimization (No Phen) the phenotype is discarded by separating the dataset into
cases and controls. The second optimization (Nor) only uses genotypes 0 and 1 for each patient,
while genotype 2 is obtained by applying nor operation over the two remaining genotypes. Both
these optimizations allow reducing the the number of memory accesses.

As it can be observed in Figure 31a, these optimization techniques resulted in an increase
of the arithmetic intensity of the application, through the reduction of the memory instructions
performed. However, it is also possible to verify that the IPC of these two versions is lower than the
baseline, although the execution time reduced 1.42x for the No Phen version and 1.72x for the Nor
version, in comparison to the Baseline application. This effect occurs due to the reduction of the
total instructions performed by the applications. Compared to the baseline algorithm, the retired
instructions for No Phen version reduced 2.27x, while for Nor version this reduction was around
2x. Since the decrease in instructions is higher than the time/cycles improvement, the applications
attain a lower IPC and become more memory bound. However, this effect is not exclusive to
MaRM. As it can be observed in Figure 31b, the reduction of the number of compute operations
(around 4x) resulted in a performed drop in CARM, since the improvement of the execution
time is lower than the operations reduction. For these two versions, the characterization between
both models also differs. While MaRM also places the applications close to the 1RS, which is
responsible for the retiring contribution according to the Top-Down method, CARM pinpoints
DRAM as the main bottlenecks and does not hint any retiring contribution. Moreover, MaRM is
also able to hint the DRAM latency issues pinpointed by the Top-Down analysis (Figure 30b) for
these two application versions; the application is placed in the region around the DRAM ridge
point, where the memory bandwidth is only a fraction of the maximum sustainable bandwidth
of the micro-architecture.

Since the Nor application has a low retirement rate and it is placed below L3 cache roof, to
boost application execution it is necessary to further improve the memory accesses. This task
is performed by introducing cache blocking techniques, improving the memory access pattern
and resulting in the Block version of the application, which attained a speedup around 3.6x when
compared to the Baseline version. As it can be observed in Figure 32a, in MaRM, the Block version
is placed between the compute roofs 2RS and 3RS, hinting its compute-bound nature. Similarly,
as shown in Figure 32b, CARM also indicates that the Block version is compute bound. Top-
Down provides the same hints, characterizing the application as limited by retiring, with small
contributions from the core bound and the memory (in particular L3 cache and DRAM Latency
as shown in Figure 30b).

The Block version of the application only contains scalar instructions and it is limited in the
MaRM by the higher retirement roofs. Thus, it is recommended to vectorize the application, which
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Figure 33 Characterization of the AVX512 version of the Epistasis Detection algorithm in MaRM and
CARM.
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Figure 34 Characterization of the OpenMP version of the Epistasis Detection algorithm in MaRM and
CARM.

is performed through the utilization of AVX512 intrinsics, allowing to attain a time speedup of 5.1x
compared to the Baseline version. MaRM (Figure 33a) places the AVX512 version of the algorithm
on top of the 2RS roof, indicating that it is completely limited by the retirement units, which
is corroborated by the Top-Down analysis, that identifies as the main bottlenecks the core and
the retirement. On the other hand, CARM characterization (Figure 33b) is inaccurate, since the
kernel is placed below the L3 cache roof. It is important to notice that MaRM is able to accurately
characterize this kernel due to its modeling approach that considers all the instructions retired
by the application. Given that the Intel Xeon Gold 6140 does not support vectorized popcounts,
the use of extract instructions was required, which are not accounted for in current roofline
models. Additionally, it is also possible to observe a drop in the IPC between Block and AVX512
versions. This effect results from the limited number of ports that support AVX512 instruction in
Skylake-SP micro-architecture. Hence, it is possible to conclude that the AVX512 algorithm is able
to attain the maximum retirement of the micro-architecture for AVX512 instructions. Moreover,
since the AVX512 version attained the maximum IPC allowed by AVX512 instructions, MaRM
hints that the vectorization attained close to maximum efficiency.

Finally, since the single-threaded algorithm is already vectorized and completely limited by
the retiring roofs in MaRM, the application is parallelized by using the OpenMP programming
model. This parallel version is limited by the 2RS roof in MaRM (Figure 34a) and attains a
speedup of 18.5x compared to the AVX512 version and 94x when compared to the baseline
version. The super-linear speedup between the AVX512 and OpenMP versions results from the
higher utilization of the L3 cache in the OpenMP, as it is observed in Figure 30b. As it can be
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observed in Figure 34b, CARM continues to indicate that the application is completely limited by
L3 cache, which does not corroborate Top-Down analysis.

3 performance and energy-efficiency modeling of

graphcore intelligent processing unit

The Graphcore Intelligent Processing Unit (IPU)32 is a massively parallel device that aims at im-
proving the performance of artificial intelligence workloads. The IPU can be seen as a distributed
memory system, organized in independent tiles, each with its own local memory. The most
recent Graphcore IPU, i.e., the Colossus™MK2 GC200 contains 1472 tiles, each supporting 6

parallel threads, with a local memory of 624KB. Thus, the GC200 IPU provides up to 8832 parallel
application threads and a total memory of around 900MB.

Each tile in the IPU contains an Accumulating Matrix Product (AMP) unit, which delivers up
to 64 multiply and accumulate operations per cycle. Thus, at a nominal frequency of 1.33GHz,
the GC200 IPU has a maximum floating-point performance of 250 TFlop/s. At this frequency, the
IPU is also to serve memory requests at a maximum memory bandwidth of 47.5 TByte/s.

The tile execution in the IPU is based on the bulk synchronous parallel (BSP) model, where the
execution is divided into three distinct phases: 1) in-tile execution, 2) sync, and 3) exchange. In
phase 1, the tile performs the computations, and the memory accesses to their private memories.
Since the execution across the tiles might be imbalanced, during phase 2 the tiles wait for the tile
with the highest execution time and sync at a barrier. Once all tiles are synced, data is exchanged
between tiles in phase 3. In the GC200 IPU, the tiles can communicate data between them at a
maximum rate of 8 TByte/s.

Since the IPU execution is based on the BSP model, modeling the performance, power con-
sumption, and energy efficiency of this device requires to consider the upper bounds of the
memory accesses and computations for phase 1, and the maximum exchange bandwidth for
phase 3. Given that the in-tile execution can be either limited by the memory accesses or the
computations, roofline models are a good fit for this task. As for phase 3 (exchange), this work
aims at extending the roofline modeling methodology to consider not only the upper bounds of
the functional units and memory transfers but also the bottlenecks related to the communication
between tiles and IPUs.

3.1 roofline modeling of the in-tile execution

As previously referred, Roofline models33 are insightful tools that provide an intuitive and simple
relation between application behavior and micro-architecture upper bounds for performance,
power consumption, and energy efficiency. These models rely on the assumption that memory
transfers and computations are executed concurrently in current processors, due to their out-of-
order nature. In this scenario, execution can be either limited by the memory hierarchy or by the
computation capabilities of the functional units. With the execution limited either by the time to
serve the memory requests (Tβ) or by the time to perform the computations (Tϕ), the execution
time according to roofline models is given by:

T = max
{
Tβ, Tϕ

}
. (12)

32Simon Knowles. “Graphcore”. 2021 IEEE Hot Chips 33 Symposium (HCS). 2021, pp. 1–25. doi: 10.1109/HCS52781.
2021.9567075.

33Ilic, Pratas, and Sousa, “Cache-aware Roofline model: Upgrading the loft”; Williams, Waterman, and Patterson,
“Roofline: An Insightful Visual Performance Model for Multicore Architectures”.
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For an IPU system with maximum memory bandwidth B (in byte/s) between the tiles and
their local memories, and maximum computational performance Fp (in flop/s), the time to
transfer β bytes is given by Tβ = β/B, while the time to perform ϕ computations is given by
Tϕ = ϕ/Fp. Hence, the maximum attainable performance of an application (Fa) can be expressed
as:

Fa(AI) =
ϕ

T
= min {B×AI, Fp} , (13)

where AI is the arithmetic intensity and corresponds to the total amount of computations per-
formed over the total amount of bytes transferred.

The roofline modeling principles can also be applied to the power consumption domain.34

When modeling power consumption, it is necessary to consider three components: the power
consumption relative to the memory accesses (Pβ), the power consumption of the computations
(Pϕ), and the constant power of the chip (Pq), due to components that are always active or shared
between computations and memory transfers (e.g. register file). Given that Pq is always present
when performing either computations or memory transfers, the power consumption of their
correspondent components can be given by the sum between the constant power and the variable
power consumption of each component, i.e., Pβ = Pq + Pv,β, and Pϕ = Pq + Pv,ϕ. Based on these
parameters, the power consumption of the IPU tiles can be calculated as:

P(AI) =
E

T
=

Eq + Ev,β + Ev,ϕ

T
= Pq +

Pv,β × Tβ

T
+

Pv,ϕ × Tϕ

T
=

= Pq + Pv,β × β/B

ϕ
× Fa(AI) + Pv,ϕ ×

ϕ/Fp

ϕ
× Fa(AI) =

= Pq + Pv,β ×min
{

1,
Fp

AI×B

}
+ Pv,ϕ ×min

{
AI×B

Fp
, 1

}
,

(14)

where E is the total energy, Eq is the constant energy, Ev,β is the variable energy of the memory
transfers, and Ev,ϕ is the energy of the computations.

Based on the performance and power consumption, the total energy and energy-efficiency
models can be derived. The IPU energy is defined as:

E(AI) = P(AI)T = ϕ

[
Pq

min {B×AI, Fp}
+

Pv,β

B×AI
+

Pv,ϕ

Fp

]
, (15)

while the energy-efficiency is given by:

ϵ(AI) =
Fa(AI)

P(AI)
=

ϕ

E(AI)
=

B×AI× Fp

Pq max {Fp,B×AI}+ Pv,βFp + Pv,ϕB×AI
. (16)

The experimental validation of the performance and power consumption models for the in-
tile execution is presented in Figures 35a and 35b, respectively. As it can be observed in the
performance roofline model (Figure 35a), the measurements follow closely the theoretical curve,
even when considering different sets of instructions, i.e., 2 loads and 1 store (2LD+ST) and FP16

AMP instructions, and 64-bit loads and FP16 fused-multiply and add (FMA).
As it can be observed in Figure 35a, both tests have similar curves. The memory region (slanted

roof) is limited by the maximum bandwidth achieved by each type of memory instructions, while

34Ilic, Pratas, and Sousa, “Beyond the Roofline: Cache-Aware Power and Energy-Efficiency Modeling for Multi-
Cores”.
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Figure 35 IPU Roofline Models.

the compute region (horizontal roof) is limited by their correspondent FP performance, i.e., 250

TFlop/s for the test that exercises the AMP units, and 15, 7TFlop/s for the test containing FMA in-
structions. Since different instructions provide different performance limits, when characterizing
applications, it is essential to select the roofline model that adapts to the workload characteristics.
For example, if an application does not use the AMP unit and uses FP16 FMAs instead, the
compute roof to consider must the one that represents the performance limits of FP16 FMA. This
allows maximizing the usability and insightfulness of the model.

Similar to the performance model, the validation of the power consumption roofline model
(Figure 35b) also closely follows the theoretical curve. In this model, the maximum power con-
sumption is achieved at the ridge point, since it corresponds to the arithmetic intensity where
the time to perform the memory transfers and computations is equal, thus their contribution to
power consumption is maximized. When the arithmetic intensity reduces, the power consump-
tion drops and tends to the power consumption of the memory transfers. Similarly, when the
arithmetic intensity increases, the power reduces until achieving the power consumption that
corresponds to the usage of the computation units. Moreover, when comparing performance and
power consumption rooflines, it is also possible to observe that higher power consumption is
coupled with a higher performance since the test containing 64-bit 2LD+ST transfers and FP16

AMP instructions achieves higher power consumption that the test with 64-bit loads and FP16

FMAs.
Finally, the energy-efficiency model obtained from both the previous models can also be

observed in Figure 35c. This model has a similar shape to the performance. However, since
the ridge point corresponds to the point where maximum power consumption is achieved, it
does not correspond to the point of maximum energy efficiency. The maximum energy efficiency
is attained when AI goes to infinity and it is equal to Fp

Pϕ . For lower arithmetic intensity, the
efficiency is limited by a slanted roof.
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3.2 modeling impact of inter-tile communication: exchange

phase

By considering the exchange phase of the BSP model, the application execution time in the IPU
corresponds to the time of the “slowest” tile. Thus, for the tile i with in-tile execution time of Ti
and communication time of Tc

i , the overall execution time of an IPU with N tiles (T IPU) is given
by:

TIPU = max
[
T0 + Tc

0
, T1 + Tc

1
, ...., TN−1 + Tc

N−1

]
. (17)

From the point-of-view of roofline modeling methodology, the model must consider the
performance upper-bounds of the system, which in that case of the IPU corresponds to a balanced
application execution. In this scenario, all the tiles spent the same time in the in-tile execution
and exchange phases, i.e., T0 = T1 = ... = TN−1 = T and Tc

0
= Tc

1
= .... = Tc

N−1
= Tc. Hence,

TIPU = T + Tc and the maximum attainable performance of the IPU (FIPUa ) can be calculated as:

FIPUa =
ϕ

TIPU
=

ϕ

T + Tc
=

=
ϕ

ϕ
Fa(AI) + Tc

=
ϕ

ϕ
Fa(AI) +

βc

Bc

=

=
1

1

Fa(AI) +
βc

ϕBc

=
Fa(AI)

1 +
Fa(AI)
AIcBc

,

(18)

where βc is the amount of bytes transferred during the exchange phase, Bc is the communication
bandwidth, and AIc is the is the communication arithmetic intensity and corresponds to the ratio
between computations and exchange bytes.

The same principles can be applied to the power consumption, by considering an additional
component Pc related to the communication between tiles, such that, Pc = Pv,c + Pq,c, where Pv,c

and Pq,c are the variable and constant power consumption of the communication, respectively. In
this scenario, the power consumption of the IPU (PIPU) is given by:

PIPU =
EIPU

TIPU
= (Eq + Ev,β + Ev,ϕ + Ev,c)× FIPUa

ϕ
=

= (Eq,ϕ,β + Eq,c + Ev,β + Ev,ϕ + Ev,c)× FIPUa

ϕ
=

= (Eq,ϕ,β + Ev,β + Ev,ϕ + Ec)× FIPUa

ϕ
=

= (Pq,ϕ,β × T + Pv,β × Tβ + Pv,ϕ × Tϕ + Pc × Tc)× FIPUa

ϕ
=

=

(
Pq,ϕ,β × ϕ

Fa(AI)
+ Pv,β × β

B
+ Pv,ϕ × ϕ

Fp
+ Pc × βc

Bc

)
× FIPUa

ϕ
=

=
Pq,ϕ,β

1 +
Fa(AI)
AIcBc

+ Pv,β ×
min

(
1, Fp

AI×B

)
1 +

Fa(AI)
AIcBc

+ Pv,ϕ ×
min

(
AI×B
Fp

, 1

)
1 +

Fa(AI)
AIcBc

+
Pc

1 + AIcBc

Fa(AI)

,

(19)
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(a) Performance - 3D Plot. (b) Performance - 2D Plot.

(c) Power-Consumption - 3D Plot. (d) Power-Consumption - 2D Plot.

(e) Energy-Efficiency - 3D Plot. (f) Energy-Efficiency - 2D Plot.

Figure 36 IPU Roofline Models with effect of inter-tile communication.

where Pq,ϕ,β is the constant power consumption of the in-tile execution phase, i.e. Pq of Equation
14, and EIPU is the energy of the IPU. Similarly, the energy of the IPU (EIPU) can be calculated
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as:

EIPU = PIPU × TIPU = PIPU ×
ϕ

FIPUa

=

= ϕ×
[

Pq,ϕ,β

min(AI×B, Fp)
+

Pv,β

AI×B
+

Pv,ϕ

Fp
+

Pc

AIcBc

]
,

(20)

and the energy-efficiency is given by

ϵIPU =
FIPUa

PIPU
=

ϕ

EIPU
=

AI×B× Fp

Pq,ϕ,β max(AI×B, Fp) + Pv,β × Fp + Pv,ϕ ×AI×B+ PcAI×B×Fp

AIcBc

.

(21)

Figure 36 presents the performance, power consumption and energy-efficiency models for the
IPU, and their variation with AI and AIc. As it can be observed in Figure 36a, the maximum
attainable performance of the in-tile execution phase (black roofline curve) is achieved when the
AIc tends to high values. As AIc decreases, i.e., the impact of communication increases, the
maximum performance that can be achieved for the entire range of AI decreases, as most of the
time is spent in the inter-tile communication. This effect can be seen in Figure 36b, for three
different AIc. When there is no data exchange between IPU tiles, i.e., AIc = ∞, the attainable
performance of the IPU is equal to Fa(AI), which corresponds to the performance of in-tile
execution phase. As AIc increases, i.e., the amount of exchanged data per floating point operation
increases, there is a reduction in the maximum attainable performance of the IPU. For example,
an AIc = 0.5 leads to a decrease in the maximum performance from around 2

18 to 2
12 GFLOP/s.

Regarding power consumption (Figure 36c), the maximum power consumption is attained
for higher values of AIc, which corresponds to the power consumption of the in-tile execution.
As the amount of communication increases, the power consumption decreases and tends to a
constant value equal to the power consumption of the communication between tiles. This effect
can also be observed in Figure 36d, where as the AIc decreases, the power consumption of the
IPU also decreases. In fact, an AIc of 0.5 leads to a power consumption almost constant and equal
to the power consumption of the components involved in the exchange phase.

Finally, energy-efficiency (Figure 36e) has a behaviour similar to the performance curve,
which maximum efficiency achieved for higher values of AIc. Moreover, as the exchange phase
contribution increases (lower AIc), the energy-efficiency also decreases, mainly due to the big
reduction in performance that also occurs with the increased impact of communication. This is
also observed for the three different AIc represented in the 2D plot of Figure 36f.

3.3 roadmap for ipu roofline development

While the scenario here considered assumes that the application execution is balanced, such
scenario might be unlikely to occur when deploying real-world applications in the IPU. This
can reduce the usability and characterization accuracy of the model when targeting this type of
workloads. Hence, the next challenges to address in the scope of the SparCity project are the
incorporation of exchange bottlenecks related to the communication between tiles in applications
that suffer from imbalance. With this aim, a set of micro-benchmarks will be developed, in
order to evaluate the maximum capabilities of the communication interface within the IPU under
distinct scenarios, such as different communication patterns and system congestion.
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4 data movement analysis

Data movement is a major factor that affects the performance of parallel applications.35 In the
context of share-memory multithreaded applications, most of them happen in the forms of cache
misses or cache line transfers across multiple cores. Due to the prevalence of this problem, tools
to detect inter-thread communications and cache partitioning were developed.

4.1 inter-thread communication analysis

To detect inter-thread communications in multithreaded code with low overheads, we extend
ComDetective

36 to AMD architectures, which was previously developed and tested on Intel
architectures. ComDetective captures inter-thread communications in the forms of commu-
nication matrices, and attributes the detected communications to their locations in source code.
Using the information generated by ComDetective, programmers are able to perform perfor-
mance tuning on their code, for example, by means of thread mapping or code refactoring. In
this work, we modify it to leverage Instruction Based Sampling (IBS) facility37 when running on
AMD machines to sample memory loads and stores in detecting communications. We refer to the
modified version of the tool as ComDetective

+.
In our experimental study, we firstly verify the accuracy of ComDetective

+ by using the
microbenchmarks in.38 We also perform sensitivity analysis to evaluate the impacts of different
sampling intervals and different debug register counts on the accuracy of ComDetective

+.
After that, we evaluate the runtime and memory overheads of the tool by running it on eight
PARSEC benchmarks.39 In the experiments, ComDetective

+ displays high accuracy while in-
curring 2.8× runtime and 1.92×memory overheads. Our next step is to utilize ComDetective

+

on a set of sparse matrices and evaluate their inter-thread communication when executing sparse
solvers such as SpMV or SpTRSV.

4.1.1 comdetective

ComDetective was first introduced for Intel architectures in.40 Since the release of the Ryzen
chips, AMD processors have become more widely used.41 With high core and thread counts per
CPU and lower power consumption than their Intel counterparts, processors from AMD Ryzen
series have become very attractive for HPC applications. By 2021, around 73 supercomputers
around the world already employed AMD processors with four out of the top ten most powerful
supercomputers utilizing these processors.42

35D. Unat et al. “Trends in Data Locality Abstractions for HPC Systems”. IEEE Transactions on Parallel and Distributed
Systems 28.10 (2017), pp. 3007–3020. issn: 1045-9219. doi: 10.1109/TPDS.2017.2703149.

36Muhammad Aditya Sasongko et al. “ComDetective: A Lightweight Communication Detection Tool for Threads”.
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Denver,
Colorado: Association for Computing Machinery, 2019. doi: 10.1145/3295500.3356214. url: https://doi.org/10.
1145/3295500.3356214.

37Paul J. Drongowski. Instruction-Based Sampling: A New Performance Analysis Technique for AMD Family 10h Processors.
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Figure 37 One possible execution scenario of ComDetective: 0) Every thread configures its PMU to
sample its stores and loads. 1) Thread Ti’s PMU counter overflows on a store. 2) Ti publishes the sampled
address to BulletinBoard if no such ’recent’ entry exists and tries to arm its watchpoints with an address in
the BulletinBoard (if any). 3) Thread Tj’s PMU counter overflows on a load. 4) Tj looks up BulletinBoard

for a matching cache line. 5) If found, communication is reported. 6) Otherwise, Tj tries to arm watchpoints
on a cache line randomly selected from the BulletinBoard. 7) Tj accesses an address on which it already set a
watchpoint, the debug register traps, communication is reported.

ComDetective is a profiling tool that leverages hardware PMUs and debug registers to
detect communication among threads. PMUs are employed to sample memory accesses in each
thread of a profiled multithreaded application, and debug registers are used to detect memory
accesses that are involved in communication with the memory accesses sampled by PMUs.

An example workflow of how ComDetective detects an inter-thread communication is
shown in Figure 37. In the beginning of profiling, ComDetective, which works in the address
space of the profiled process, sets each thread to configure its PMUs to sample memory loads
and stores. When a sampled memory access to address m0 occurs in a thread t0, t0 retrieves the
sampled address m0 and extracts the offset address c0 of its cache line. c0 is queried in a globally
shared data structure called BulletinBoard to see if an address from the same cache line c0 has
’recently’ been published by another thread t1 in the BulletinBoard. If such an address exists in
the BulletinBoard, a communication is detected between t1 and t0. However, if such an address
cannot be found in the BulletinBoard, t0 randomly selects a ’recent’ entry published by another
thread t2, such that t2 ̸= t0, from the BulletinBoard, and arms its debug registers to detect
communication between t0 and t2. If any of the debug registers traps, it means there is a memory
access in t0 to the same cache line that was accessed by t2, and therefore a communication or
cache line transfer happens from t2 to t0. In addition to attempting to detect communication,
t0 also tries to publish its sampled address m0 to the BulletinBoard if the type of the memory
access sampled by t0 is a store access and there has not been any ’recent’ sample on cache line c0

in the BulletinBoard.

4.1.2 implementation

To profile multithreaded applications in AMD machines, ComDetective
+ leverages IBS fea-

tures.43 However, to configure and sample IBS using perf event open system call, certain

43Drongowski, Instruction-Based Sampling: A New Performance Analysis Technique for AMD Family 10h Processors.
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BIOS software that is not always available by default is needed44.45 Since this BIOS soft-
ware is not always available, we have to rely on an open source Linux kernel module named
AMD IBS Toolkit.46 For ease of prose, we refer to this Linux kernel module as IBS driver. This
IBS driver allows a user application to configure IBS and retrieve samples from IBS. Two flavors
of sampling can be performed using IBS – fetched instruction sampling and executed micro-
operation sampling. Using its ioctl interface, this driver allows user applications to enable or
disable IBS counters and set up sampling period. To further support the profiling tools, we
modify the IBS driver by introducing additional capabilities to it. This extra modification of the
code that runs in kernel space makes the development of ComDetective

+ more laborious than
the development of its Intel counterpart, which can already take advantage of perf event open

system call to program PEBS.
Upon its installation, the IBS driver creates a number of character device files, each of which

serves as an interface to the IBS hardware of each CPU core. For ease of reference, we call a
character device file as a device file from this point on. The number of device files that are created
is twice the number of logical cores in the machine, such that for each CPU core there are two
device files; for sampling fetched instructions and executed micro-operations, respectively. After
creating the device files, the IBS driver also registers a function as an interrupt handler that will
handle any hardware interrupt due to an IBS sample.

Figure 38 displays the workflow of the IBS driver during profiling. When ComDetective
+

begins profiling an application, each application thread, which also runs the profiling tool’s code
in its address space, opens a device file for sampling executed micro-operations that belongs
to the logical core it is running on. By interfacing with the device file using the ioctl system
call, each thread configures the sampling period of IBS in its core, sets up the size of the ring
buffer that will contain sampled data, and activates IBS counter in its core. In addition to these
configurations, we modified the IBS driver to allow a thread to register its thread ID so that the
sampling interrupts whose sampled data are to be copied to a ring buffer by the interrupt handler
are only those encountered by registered threads.

When an IBS counter overflow happens in a CPU core, a hardware interrupt is triggered and
the interrupt handler is called by the IBS driver. This interrupt handler copies sampled data from
IBS’ model-specific registers (MSRs) in that CPU core to a ring buffer. Since ComDetective

+

only needs memory access samples to profile multithreaded code, we modified the interrupt
handler to allow only micro-operation samples that are memory accesses with valid instruction
pointers and valid effective addresses to be copied to the ring buffer. For ease of reference, we
refer to these samples as valid samples. To access the sampled data from the ring buffer, a user
thread needs to read it from the device file that belongs to the CPU core.

By default, the IBS driver does not support signal delivery to user threads upon sampling
interrupt. To enable profiling threads to get notified every time a valid sample occurs, we modified
the IBS driver to send an OS signal to the user thread that triggers the interrupt. At a sampling
interrupt, an OS signal will be sent to the user thread that causes the interrupt only if that thread
has registered itself to the IBS driver. Upon handling a sampling signal, a profiling thread reads
the device file corresponding to the CPU core that encounters the interrupt to retrieve the sampled
data.

44Joseph L. Greathouse. Re: Error : IBS profiling is disabled in your BIOS. https://community.amd.com/t5/general-
discussions/error-ibs-profiling-is-disabled-in-your-bios/td-p/55043. AMD Community.

45Joseph L. Greathouse. Re: IBS not available on EPYC 7451 ? https://community.amd.com/t5/server-gurus-

discussions/ibs-not-available-on-epyc-7451/m-p/258228. AMD Community.
46Joseph L. Greathouse. AMD Research Instruction Based Sampling Toolkit. https://github.com/jlgreathouse/AMD_

IBS_Toolkit. 2017.
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Figure 38 One possible workflow scenario of the IBS driver: 1) Every thread calls open system call to get the
file descriptor of the device file that corresponds to the core it is running on. 2) Every thread uses ioctl system
call on the file descriptor to configure the sampling period of IBS, sets up the size of the ring buffer that will
contain sampled data, registers its thread ID to the interrupt handler, and initializes the IBS counter. 3) Thread
T1’s IBS counter overflows, the interrupt handler handles the hardware interrupt triggered by the overflow, and
the interrupt handler copies the sampled data from IBS’ model-specific registers (MSRs) to the ring buffer. 4)
The interrupt handler sends an OS signal to the thread that triggered the interrupt, i.e. thread T1. 5) A signal
handler that runs in T1’s address space handles the OS signal, and reads the device file to retrieve the sampled
data.

In AMD machines, ComDetective
+ interfaces with the modified IBS driver to configure

the settings of IBS sampling, and retrieve data from valid samples. In each IBS sample, this tool
reads the IbsDcLinAd and IbsOpMemWidth attributes of the sampled data to extract the sampled
effective address and the width of the accessed memory region, respectively. In addition to
getting sampled addresses, ComDetective

+ also checks the IbsStOp and IbsLdOp flags of each
sample to see if a sampled memory access is a store or a load operation.

4.1.3 communication count analysis

The accuracy of the communication analysis tool is evaluated in terms of its abilities to capture
communication patterns, to differentiate true sharing from false sharing, and to capture total com-
munication counts correctly. In evaluating the tool’s accuracy, we employ the microbenchmarks
in.47 Furthermore, we also evaluate the sensitivity of ComDetective

+ under different thread
counts, different sampling intervals, and different debug register counts. This section also reports
the overheads of the tool by running it on a number of benchmarks from the PARSEC benchmark
suite. Our AMD machine is a 2-socket AMD EPYC 7352 CPU from Zen 2 microarchitecture family.
There are 24 cores per socket with 2-way simultaneous multi-threading in this machine, and each
core has its own local L1i, L1d, and L2 caches. We use Linux 5.11.0 and GNU-9.3.0 toolchain
in this machine. Unless otherwise stated, the default sampling interval is 50K, and the default
number of debug registers that we use in each core is four.

In this experiment, we evaluate the accuracy of ComDetective
+ in capturing total communi-

cation counts. The ground truth for this experiment is L2 data cache miss counts measured using
Linux perf as these counts reflect the total communication counts that occur in the Write-Volume
benchmark from48 that we use in this experiment.

The results show the estimated communication counts captured by ComDetective
+ when

47Sasongko et al., “ComDetective: A Lightweight Communication Detection Tool for Threads”.
48Ibid.
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Figure 39 Total communication counts for different sharing fractions in the AMD machine.

profiling the benchmark running with different thread counts and different socket mappings. As
shown in the figure, the estimated counts are close to the ground truth in nearly all cases. The
exceptions are the cases with high sharing fraction, i.e. 0.8 or higher, and low thread counts, i.e.
2, 4, and 8 threads.
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Figure 40 Debug register sensitivity results of ComDetective
+

Sensitivity to Debug Register Count
We performed sensitivity analysis on the accuracy of the ComDetective

+ with respect
to the number of used debug registers. In this experiment, we used the tool to profile the
communication volume benchmark running on 2 and 16 threads that are mapped to the same
socket. To evaluate the impact of different debug register count on the accuracy of the profiling
tool, we employed the tool to profile the synthetic benchmark running with different sharing
fractions and different number of debug registers. Figure 40 presents the results. As shown in the
figures, when the number of threads is 16, the accuracy of the tool remains high regardless of the
number of debug registers used. However, when there are only two threads, ComDetective

+

is the closest to the ground truth only when the number of debug registers used is 4.
Overhead Analysis
We evaluate the overheads of ComDetective

+ by running it on eight PARSEC bench-
marks,49 i.e. blackscholes, bodytrack, dedup, fluidanimate, freqmine, streamcluster, swaptions, and vips
with 50K sampling interval. The average runtime overhead over these benchmarks is 2.8×, and

49Bienia et al., “The PARSEC benchmark suite: Characterization and architectural implications”.
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the average memory overhead is 1.92×, which are still much lower than the overheads of cycle-
accurate simulators and binary instrumentation-based tools. One binary instrumentation-based
communication analyzer that we evaluated as a comparison is Numalize50 51 whose runtime over-
head is more than 16× and memory overhead is nearly 2000×. Consequently, the overheads of
ComDetective

+ make it practical to be used for real-life applications.

4.1.4 comdetective
+

roadmap

ComDetective
+ is currently working on Intel and AMD x86 architectures. From this point, we

would like to pursue two direction of research. Firstly, we would like to extend the communication
monitoring tool to other architectures such as ARM, GPUs, possibly IPUs. Secondly, we will utilize
the tool on a number of sparse matrices and leverage it for performance analysis. In addition, we
plan to integrate it to the Digital SuperTwin toolset so that it can work seamlessly with the rest of
the probing features of Digital SuperTwin.

4.2 cache partitioning

Cache partitioning is an optimisation technique that allows to virtually split a cache into multiple
partitions. One of the use cases for cache partitioning is to improve cache behaviour e.g. by
separating reusable data from non-temporal data in different partitions. The potential benefit
of cache partitioning with two partitions can be modeled using reuse distance by dividing the
address space into two parts D and D.

Reuse distance is a metric that allows to analyse the cache behaviour of an application. The
metric is independent of the cache size and only depends on the addresses of the sequence of
memory references (trace) made during application execution. Based on the reuse distance RD(x)
of a trace, the number of cache misses occurring during application execution can be computed
for fully associative caches with LRU policy for arbitrary cache capacities C (Equation 22). For
set-associative caches with (pseudo-)LRU policy, the number of cache misses can be approximated
using reuse distance.

miss(C) =
∑

RD(x)⩾C

RD(x) (22)

The application trace is split into one trace containing all memory references belonging to
D and another trace including the remaining references. To model the number of cache misses
when data in D is isolated in a cache partition, the reuse distances of the resulting two split
traces are calculated to construct two partitioned reuse distance histograms. Equation 22 can then
be modified to estimate the number of cache misses for various cache partition sizes C0 and C1

(Ctotal = C0 +C1) when the data in D is placed in a partition with cache capacity C0 (Equation 23).

miss(C0,D) =
∑

RD(x)⩾C0

RDD(x) +
∑

RD(x)⩾C1

RDD̄(x) (23)

The optimal cache partitioning w.r.t. D is the partitioning scheme that minimizes the total number
of cache misses.

50Matthias Diener et al. “Characterizing communication and page usage of parallel applications for thread and data
mapping”. Performance Evaluation 88-89 (2015), pp. 18–36.

51Matthias Diener et al. “Communication in Shared Memory: Concepts, Definitions, and Efficient Detection”. 2016
24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing. 2016.
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4.2.1 profiling tool

Based on the aforementioned considerations, a profiling tool was developed to provide hints to
programmers on parts of their application that may benefit from cache partitioning. An appli-
cation’s memory access trace, which characterises the application cache behaviour, is obtained
using Intel Pin for binary instrumentation in order to calculate partitioned reuse distance his-
tograms. The partitioned reuse distance histograms allow to estimate the number of cache misses
occurring when isolating data structures in a cache partition. Therefore, the tool is able to model
the potential cache reuse during sparse computations using cache partitioning.

4.2.2 results

Fujitsu’s A64FX processor comes with a lightweight cache partitioning hardware feature called
sector cache and was used to evaluate the developed tool-based approach using the NAS parallel
benchmarks. Multiple applications in the NAS parallel benchmarks have been identified to profit
from cache partitioning, one of them being the CG benchmark class C. CG is an iterative conjugate
gradient method based on a CSR SpMV kernel (see (algorithm 1)). It is found that isolating the
matrix data (colidx and a) in a cache partition with minimal space of the L2 cache improves
reuse of the source vector x by protecting x from being thrashed by the streaming accesses to the
matrix data colidx and a.

Table 4 shows the measured and predicted L2 cache miss reduction using the sector cache for
the CSR SpMV kernel with the sparse matrix data of the CG benchmark class C as input using 1

and 12 cores (A64FX L2 is shared by 12 cores). The predicted cache miss reduction is in line with
the actual measurements using hardware performance events. However, the potential benefit of
cache partitioning for that particular sparsity pattern is low. In an ongoing further investigation
in collaboration with Simula, a matrix with a more irregular sparsity pattern (Lynx68 reordered52)
in conjunction with a ELLPACK format SpMV kernel was profiled with the tool. Even though this
matrix is already reordered for optimal cache reuse, the tool indicates that cache partitioning can
even further reduce occurring cache misses (see Table 4). Actual measurements of cache misses
for this matrix using cache partitioning on the A64FX processor will be provided in the future.
Also other matrices and storage formats are part of ongoing further investigation. For example
the SELL-C-sigma53 storage format was used by Alappat et al.54 and the authors also showed that
SpMV performance can be improved significantly using the sector cache feature of the A64FX
processor in a SpMV kernel based on this storage format.

52Trotter, Langguth, and Cai, “Cache simulation for irregular memory traffic on multi-core CPUs: Case study on
performance models for sparse matrix–vector multiplication”.

53Moritz Kreutzer et al. “A unified sparse matrix data format for efficient general sparse matrix-vector multiplication
on modern processors with wide SIMD units”. SIAM Journal on Scientific Computing 36.5 (2014), pp. C401–C423.

54Christie Alappat et al. “Execution-Cache-Memory modeling and performance tuning of sparse matrix-vector
multiplication and Lattice quantum chromodynamics on A64FX”. Concurrency and Computation: Practice and Experience
(2021), e6512.
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Table 4 Average measured and predicted L2 cache miss reduction of SpMV kernels using the sector cache of
the A64FX processor.

Cores Matrix Format L2 miss reduction m. [%] L2 miss reduction p. [%]

1 CG class C CSR 0.92 1.37

12 CG class C CSR 1.25 1.23

1 Lynx68 reordered ELLPACK - 4.44

12 Lynx68 reordered ELLPACK - 11.26

5 digital supertwin

A Digital Twin is a structured collection of information emitted from a real-world system. Digital
twins capture both structural and sensory data from their physical counterparts and allow for
in-depth historical analysis, real-time monitoring, simulation, and prediction of the entity it
models.

Although there are several digital twin ontologies in the literature for modeling industrial
machines,55 cities56,57 smart buildings58 and even earth,59 up to our knowledge, there is little
to no work on ontologies to describe computers as cyber-physical systems. Some of the well-
known ontologies are; SOSA (Sensor, Observation, Sample, Actuator)60 which is used to describe
industrial pipelines and FOAF (Friend of a Friend) which is used to describe relations among
people. Moreover, there are several vocabularies used to describe digital twins, such as RDF (Re-
source Description Framework) and OWL (Web Ontology Language). Ontologies using these
vocabularies allow static information to be located and queried using web interfaces via SPARQL
endpoints. These frameworks are widely used to represent web-based interactions. However,
these ontologies are used to keep static data. In our case, we used DTDL (Digital Twin Definition
Language) to design and implement the proof-of-concept of our SuperTwin which is a digital
twin of a supercomputer and can be used to model and analyze the performance and energy
consumption of sparse kernels.

DTDL is developed by Microsoft for IoT frameworks, therefore provides a more suitable basis
for describing computers. It is made up of six metamodel classes that describe the context of
digital twin components. These classes are; Interfaces, Telemetry, Properties, Commands,

55Charles Steinmetz et al. “Internet of Things Ontology for Digital Twin in Cyber Physical Systems”. 2018 VIII
Brazilian Symposium on Computing Systems Engineering (SBESC). 2018, pp. 154–159. doi: 10.1109/SBESC.2018.00030.

56Tianhu Deng, Keren Zhang, and Zuo-Jun (Max) Shen. “A systematic review of a digital twin city: A new pattern
of urban governance toward smart cities”. Journal of Management Science and Engineering 6.2 (2021), pp. 125–134. issn:
2096-2320. doi: https://doi.org/10.1016/j.jmse.2021.03.003. url: https://www.sciencedirect.com/science/
article/pii/S2096232021000238.

57Ehab Shahat, Chang T. Hyun, and Chunho Yeom. “City Digital Twin Potentials: A Review and Research Agenda”.
Sustainability 13.6 (2021). issn: 2071-1050. doi: 10.3390/su13063386. url: https://www.mdpi.com/2071-1050/13/
6/3386.

58Qiuchen LuVivi et al. “Developing a Dynamic Digital Twin at a Building Level: using Cambridge Campus as Case
Study”. International Conference on Smart Infrastructure and Construction 2019 (ICSIC), pp. 67–75. doi: 10.1680/icsic.
64669.067. url: https://www.icevirtuallibrary.com/doi/abs/10.1680/icsic.64669.067.

59Jensen Huang. Nvidia to build earth-2 supercomputer to see our future. 2022. url: https://blogs.nvidia.com/blog/
2021/11/12/earth-2-supercomputer/.

60Krzysztof Janowicz et al. “SOSA: A lightweight ontology for sensors, observations, samples, and actuators”. Journal
of Web Semantics 56 (2019), pp. 1–10. issn: 1570-8268. doi: https://doi.org/10.1016/j.websem.2018.06.003. url:
https://www.sciencedirect.com/science/article/pii/S1570826818300295.
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Relationships and Data Types. In DTDL, every Interface is a digital twin on it’s own with
it’s contents describing it’s Properties, Telemetry, and Relationships. When combined, these
enable to capture the hierarchical structure of a supercomputer and model every single com-
ponent (e.g., CPU, GPU, memory subsystem, etc.) as a separate digital twin entity. Moreover,
processes also can be modeled as digital twins and monitored via per-process kernel metrics.
This approach, in turn, provides a fine-grained modeling of entities. For example, an L1 cache
can be isolated from the system and analyzed against different settings, the same process can
be monitored with different parameters and on different hardware, or a component’s different
firmwares can be tested against each other to find bugs or performance anomalies.

5.1 probing

To capture the structural information for the underlying system, a detailed probing is required.
We probed the system and aimed to describe the system components with their specifications
and their inter-/intra-relations. This ontology -although is still under development- aims to
present each physical hardware component that produces performance metrics or affects the
overall system performance. This probing must capture these relationships in a lightweight,
easily adaptable, and generic way. To this end, we relied on widely available Linux tools to gather
data. The system, network, and memory information are collected via lshw utility. The CPU, GPU
(and other accelerators) as well as the memory/cache topology metadata are collected by parsing
likwid-topology and cpuid tools. Disk info is probed from /sys/block/*/device and SMART

utility when available. PMU information is collected with libpfm4 library which can recognise
model-specific registers and their events of virtually every x86 and ARM processor available on
the market. Upon probing PMU information via libpfm4, every hardware performance metric
core and uncore which perfevent can report are obtained. Some of the datapoints acquired while
probing the system is presented at Table 5.

5.2 constructing digital twin

Using the information acquired via probing, the Digital Twin, a.k.a, SuperTwin, is generated.
While constructing the ”base digital twin”, all the components on the physical system, their
relations with other components, and every performance metric that the physical system can
report are added to the digital twin independently. This approach could be seen in Algorithm 2.
The system is considered as the node at depth d = 0, and all the other components are contained
by it. For the components that also contain other components, such as CPUs, the same method is
applied until no subcomponent is left. However, for every depth, every component has its metrics
added as their telemetry if there is any metric in the metric namespace with their unique label.
Moreover, note that at line 18, caches are created as they exist in the physical system. Instead
of every thread having a cache subcomponent, there is a single cache component contained by
every thread that shares it. To validate the generated JSON-LD presentation, Azure Digital Twin
Explorer is used. A twin graph generated by Azure Digital Twin Explorer could be seen in
Figure 41.

Although the number of the performance metrics a digital twin can report in theory is in
the order of thousands, this is impractical due to the overhead of the sampling process. Hence,
our base digital twin is instantiated into linked data models, which only have metrics that are
configured to be sampled. Since in a computer’s Digital Twin, both structural and sensory
time-series (i.e., the telemetry) data will have importance for semantic queries to be executed,
it is better to keep these data in an associated way. However, while time-series databases like
InfluxDB are fast and efficient for processing time-series data, they can’t keep much metadata
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Figure 41 Part of the twin graph generated by the Azure Digital Twin Explorer.
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 "@id": "dtmi:dt:scout:disk:nvme0n1;1",

 "@context": [

  "dtmi:dtdl:context;2"

 ],

 "contents": [

{

   "@id": "dtmi:dt:scout:disk:nvme0n1:telemetry1090;1",

   "@type": "Telemetry",

   "schema": "string",

   "name": "metric0",

   "displayName": "_nvme0n1",

   "description": "disk_dev_read"

}]}

pmda

measurement: disk_dev_read

field_key: _nvme0n1

db: pcp_21062022_956017

hostname: scout

digitial twin:

Influxdb: pcp_21062022_956017

Figure 42 Management and linking of time-series and metadata.

for knowledge management. On the contrary, inserting and querying time-series data into a
document database such as MongoDB is impractical.61 Therefore, the Digital SuperTwin requires
two types of databases and an association between them. To this end, in our proposed design,
while InfluxDB holds performance metrics as time-series data, MongoDB, which is a document
store, holds the digital-twin instance (in JSON-LD format), the metadata of the monitored time
interval, process, and/or framework. In addition, to associate them with telemetry data, a pointer
to InfluxDB is stored, which is the place of the performance metrics regarding the MongoDB entry
kept. This structure allows accessing per-observation data, w.r.t. the job type and component
type, via queries on metadata.

61Friedemann, Marko, Wenzel, Ken, and Singer, Adrian. “Linked Data Architecture for Assistance and Traceability in
Smart Manufacturing”. MATEC Web Conf. 304 (2019), p. 04006. doi: 10.1051/matecconf/201930404006. url: https:
//doi.org/10.1051/matecconf/201930404006; Katarina Milenković et al. “Enabling Knowledge Management in
Complex Industrial Processes Using Semantic Web Technology”. English. Proceedings of the 2019 International Conference
on Theory and Applications in the Knowledge Economy. 2019 International Conference on Theory and Applications in the
Knowledge Economy, TAKE 2019 ; Conference date: 03-07-2019 Through 05-01-2020. 2019. url: https://www.take-
conference2019.com/.
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Field Probing Field Probing Field Probing

arch model businfo
os number of sockets firmware
kernel number of threads ipv4

motherboard threads per core link
System

uuid hyperthreading model

id tlb serial
L2 size flags speed
SIMD width min clock rate vendor
numa node max clock rate

Network

virtual

clock rate

CPU

topology clock

compute capability L1D associativity model
max registers per block L1D cache group topology size
max threads per SP L1D cache line size slot
max threads per block L1D no sets

Memory

vendor

memory size L1D size name
memory bus width L2 associativity number of events
memory clock rate L2 cache group topology number of counters
name L2 cache line size max encoding
number of SPs L2 no sets

PMU

type

shared mem per block L2 size PMU name
surface alignment L3 associativity name

GPU

texture alignment L3 cache group topology description

model L3 cache line size flags
rotational L3 no sets Umask-*Disk
size

Cache

L3 size

PMU Event

modif-*

Table 5 A subset of the data probed from the system. Except of CPU, Cache and System, system information
is probed for every component of the same type.

5.3 digital supertwin roadmap

SuperTwin is currently implemented as a prototype, and its development continues. From this
point, several visualizations and extendability capabilities will be added. Firstly, dashboard
generation will be implemented to facilitate both real-time and per-request monitoring and visual
analysis. To increase extendibility, using the aforementioned individual digital twins approach,
digital twin description will be generated using RDF vocabulary instead of DTDL, which can
be converted back into DTDL. This migration will enable SuperTwin hardware components and
their properties to be analyzed easily via web interfaces. After that, the focus will be on scaling
SuperTwin from a single-node framework to a supercomputer framework. At the same time,
machine learning models will be developed using acquired data on the sparse kernels that have
been currently investigated by the consortium to see if the output of the ML models match with
the state-of-the-art analysis.
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1 def add_my_metrics(component ):

2 for metric in available_metrics:

3 if(component.type == metric.type):

4 add_telemetry(component , metric)

5

6 def add_component(component , subcomponent ):

7 add_to_twin(subcomponent)

8 add_my_metrics(subcomponent)

9 add_ownership(component , subcomponent)

10

11 def add_subcomponents(component , subcomponents ):

12 for socket in system:

13 add_component(system , socket)

14 for core in socket:

15 add_component(socket , core)

16 for thread in core:

17 add_component(socket , thread)

18 for cache in cache_groups[thread ]:

19 add_component(thread , cache)

20

21 def create_twin(system_probing ):

22 system = create_system ()

23 add_subcomponents(system , cpus)

24 add_component(system , memory)

25 add_component(system , disks)

26 add_component(system , networks)

27 add_component(system , gpus)

28 add_component(system , proc)

29 }

Algorithm 2: Digital Twin is generated via both contextual and structural information probed
from the system.

6 conclusions

The Deliverable 1.2 elaborated the ongoing research developments conducted in the scope of
the SparCity project that refer to the performance and energy-efficiency modeling and anal-
ysis/profiling tools, which are predominantly focused on tackling the challenges related with
efficient sparse computing in different device architectures and systems.

For this purpose, an extensive analysis, validation and characterization of different sparse
computation kernels was performed in the state-of-the-art insightful models, i.e., in the Original
Roofline Model (ORM) and in the Cache-aware Roofline Model (CARM). To improve the CARM
insightfulness, a micro-benchmarking methodology was proposed, which allows for scaling the
performance upper-bounds according to the characteristics of the sparse kernels. Furthermore,
a novel Mansard Roofline Model (MaRM) was also proposed, which incorporates a new set of
architectural features related to the retirement constraints of modern processors to provide more
realistic modeling of performance upper bounds when compared to the state-of-the-art models.

SparCity 52



The proposed roofline models, analysis and methodology were rigorously evaluated for a
large set of sparse matrices from SuiteSparse Matrix Collection by considering different spar-
sity patterns, characteristics and reordering algorithms, when characterizing SpMV and SpMM
custom-build and Intel MKL sparse kernels, as well as when guiding the optimization of the
second-order epistasis detection algorithm (use-case application in the SparCity project). The
obtained results show that the proposed models allow for more precise characterization of the
sparse computations than the state-of-the-art models, while also providing the insights that are in
line with the Intel TopDown VTune analysis, for both single- and multi-core execution scenarios.

The roofline principles were also applied to the Graphcore Intelligent Processing Unit (IPU),
in order to model the performance and energy-efficiency upper-bounds of this architecture.
Since the IPU adopts a specific execution model, a new modeling approach was derived, which
specifically considers different phases of the IPU execution, i.e., in-tile execution and inter-tile
communication (exchange). For both execution phases, the performance, power consumption
and energy-efficiency upper-bounds were modeled and experimentally validated with micro-
benchmarking for in-tile execution, attaining a very high match with the theoretical model.

In addition, several communication modeling and analysis tools were proposed, which aim
at identifying horizontal and vertical data movement within the memory hierarchy. These tools
allow for detailed data movement profiling, which is crucial for communication optimization, data
placement and cache partitioning. In particular, the support for AMD x86 architectures is provided
in the extended inter-thread communication detection tool, with the tool’s accuracy, sensitivity
to sampling interval and time/memory overheads beeing experimentally verified across a large
set of benchmarks. Moreover, a cache partitioning strategy based on reuse distance is proposed,
coupled with a profiling tool that was developed to pinpoint parts of the application that may
benefit from cache partitioning. The proposed work was applied to an iterative conjugate gradient
method based on a CSR SpMV kernel, and the experimental results show that the improved reuse
of the source vector and overall reduction in the L2 cache misses were attained in Fujitsu’s A64FX
processor. Finally, all the developed performance, energy-efficiency and communication models
are expected to influence the design of the SparCity Digital Twin, which initial construction
and probing mechanisms were documented herein.
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