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§ Training time measured in Exaflop days

§ Models (reportedly) exceed 1T parameters
— and are actually better as they grow…

§ Without reducing memory consumption, 
we will not have the capacity to expand

§ Are all the parameters and features 
necessary?

The large-scale era of Machine Learning

175B 540B >1T

Sevilla et al., “Parameter, Compute, and Data Trends in Machine Learning”, 2021

Massive GPU memory required before considering data + activations
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Sparsity in HPC               vs.                       Machine Learning

𝑊!

𝑊"

Source: SuiteSparse Matrix Collection

Source: Sparsified BERT
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§ Sparse elements in deep learning

§ Representations

§ Scheduling strategies

§ Hardware/software co-design and research tools

Overview
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Primer on deep learning

𝑓(𝒘; 𝑥)

Input distribution 𝒳 Output distribution 𝒴
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Primer on deep learning
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Where do we encounter sparsity?
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Where do we encounter sparsity?
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Where do we encounter sparsity?
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Where do we encounter sparsity?

Model (sparsification)
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Where do we encounter sparsity?
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Input representations

Movies

U
se

rs

“X likes The Barbie Movie, what else might they like?”
Model output: “Oppenheimer”
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Recommendation Systems
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Data parallelism

Besta & Hoefler, “Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis”, 2022

Re
LU

Re
LU

Re
LU

Pipeline parallelism

Graph Neural Networks
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Inherent sparsity in models !
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Mixture of ExpertsConvolution Operator

My name

MLP 1 MLP 2 MLP 3

Tokens:

MLP 1 MLP 2 MLP 3

Routing:

… …

.

.

.

Fedus, Zoph, Shazeer. “Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity”, JMLR’22
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§ Attention is 𝑂(𝑛*). 𝑛 is now 128,000

Inherent sparsity in models – sparse attention !
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Source: https://blog.research.google/2021/03/constructing-transformers-for-longer.html 

Zaheer et al. “Big Bird: Transformers for Longer Sequences”. NeurIPS 2020
Wang et al. “Linformer: Self-Attention with Linear Complexity”. arXiv:2006.04768

https://blog.research.google/2021/03/constructing-transformers-for-longer.html
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What about tried and true models?

Model (sparsification)
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§ Reduces model parameters

§ Improves generalization (Occam’s Razor)

§ Necessity: input representation or infeasibility

§ State-of-the-art: 95% sparse ResNet-50, 50% sparse
GPT models run at essentially same quality, up to 20x
cheaper!

Why should we sparsify?

https://jmlr.org/papers/volume22/21-0366/21-0366.pdf 
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https://jmlr.org/papers/volume22/21-0366/21-0366.pdf
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A taxonomy of model sparsification

Model Sparsity
(per model)

Ephemeral Sparsity
(per example)

Weights Neurons Neuron groups
(filters/channels/heads)

Dropout
(Activations/Weights)

Gradients Errors Optimizer 
State

unstructured
(fine-grained)

structured
(blocked/strided)

affects inference + forward pass

structured sparsity affects training
gradient-based optimization

𝒆𝟏𝒈𝟏

Conditional computation
(route each example through a 

Different sparse subnetwork)inference + forward pass

Activations
(e.g., ReLU)

Hoefler, Alistarh, Ben-Nun, Dryden, Peste. “Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks”,  JMLR’21
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0% 30% 70% 90% 99.99999%99.9%
dense low sparsity medium sparsity moderate sparsity high sparsity

Bitmap
[010011000001|2345] 

RLE / Delta
[1|2,2|3,0|4,5|5]

Dense
[0,2,0,0,3,4,0,0,0,0,0,5]

CSR/CSC/CSF
[1] [1|2,2|3,0|4,5|5]

COO
[1|2, 5|3, 6|4, 12|5]

Sparse representations in ML

50%

2:4 sparsity

HYB

Source: NVIDIA

https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
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§ Sparsity can be conditioned
— The more constraints applied, the worse the end result

§ Training and inference differ
— Transposed representation necessary for backpropagation
— Sparse representation may change during training!

§ Hardware support
— NVIDIA Sparse Tensor Cores
— CSR/CSC can be used effectively for inference

Considerations in picking a representation

Source: NVIDIA

https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/
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Operation order in GNNs matters!

Forward Backward

Bazinska et al. “Cached Operator Reordering: A Unified View for Fast GNN Training”. arXiv:2308.12093

Up to 1.94x speedup over PyTorch Geometric!
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NN evaluation can be performed as graph traversal

Gleinig, Ben-Nun, Hoefler, “A Theory of I/O-Efficient Sparse Neural Network Inference”. arXiv:2301.01048

Performance on BERTLARGE vs. MKL
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data-free
(no model evaluation)

data-driven
(inference-only)

training-aware
(full training)

neuron-/weight-
similarity

weight 
magnitude

remove trivial
elements

input sensitivity
(do outputs change 
across examples?)

sensitivity correlation / 
similarity merge

loss function
approximation

1st order
2nd order

statistical / 
variational

regularization
L0
L1
L2

“energy”
(outputs always 

nearly zero?)

similarity
(outputs are 
all similar?)

Fourier sensitivity
(which weights do 

not influence outputs?)

Hebbian
(strengthen weights
between correlated 

neurons)

𝒘! = 𝒆
𝝏𝑳
𝝏𝒘 ,𝒘

≈ ≈ ≈0.1 0 𝜎! ≈ 0 ≈

Model sparsification techniques

Hoefler, Alistarh, Ben-Nun, Dryden, Peste. “Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks”,  JMLR’21
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train then sparsify sparsify during training
(including iterative sparsification)

sparse training
(including regrowth)

When to sparsify?

initialize structure (re)initialize weights training prune / regrow retrain

1 2 3 4 5

iterate6

reset / rewind7
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§ Early structure adaptation takes place

§ In large models: we may not have the budget to retrain
— SparseGPT uses second-order information on a set of examples

§ Model can be adapted: Inject ReLU to promote activation sparsity

§ Repositories such as the Sparse Zoo contain recipes for many models

“Best” practices: 

§ Gradual magnitude pruning will get you most of the way to 90%
— Higher sparsity or less drop will require more advanced techniques

§ Be mindful of which layers you sparsify and their position in the model

When to sparsify?

Frantar & Alistarh, “SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot”. arXiv:2301.00774
Mirzadeh et al. “ReLU Strikes Back: Exploiting Activation Sparsity in Large Language Models”. arXiv:2310.04564
Sparse Zoo, https://sparsezoo.neuralmagic.com/

https://sparsezoo.neuralmagic.com/
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Blocked MaterializingStreaming

Programming Sparse Models – Meet PyTorch STen

Ivanov et al. “STen: Productive and Efficient Sparsity in PyTorch”. arXiv:2304.07613.
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torch.sparseSTen

STen Performance

30

2:6 sparse format

dense sparse densedense

Custom implementation of 
matrix multiplication: 
sparse @ dense -> dense
Linear layer: y = x W + b

32% speedup

Ivanov et al. “STen: Productive and Efficient Sparsity in PyTorch”. arXiv:2304.07613.
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VENOM Performance

Castro et al.: “VENOM: A Vectorized N:M Format for Unleashing the Power of Sparse Tensor Cores“. SC23
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Conclusion
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