These slides + links to papers: $\underline{\text { hpcgarage.org/futuresparse } 23}$

Didem, I have bad news for you

THE FUTURE IS SPARSE

RICH VUDUC - NOVEMBER 17, 2023

https://tenor.com/view/whomp-whomp-whomp-whomp-so-sad-smallest-violin-violin-gif-22252865

These slides + links to papers: $\underline{\text { hpcgarage.org/futuresparse } 23}$

Didem, I have bad news for you

THE FUTURE IS SPARSE

RICH VUDUC - NOVEMBER 17, 2023

https://tenor.com/view/whomp-whomp-whomp-whomp-so-sad-smallest-violin-violin-gif-22252865

The future is not sparse

The future is not sparse

Four "generations" of computing

Generation	Time frame	Human-computer ratio	Canonical device	Application	
				Initial	Follow-on
1	Mid-1930s	Many-1	Mainframe	Scientific calculation	Data processing
2	Late 1960s	1-1	PC	Spreadsheet	Database management, document processing
3	Late 1980s	1-many	Inch/foot/yard	Calendar and contact management, humanhuman communication	Location-based services, social media, app ecosystem, education
4	Mid-2000s	Many-many	Cloud/crowd/shroud	Personal navigation and entertainment	Health advisors, educational assistants, supply chain logistics

Four "generations" of computing

OUTLOOK

TABLE 1. A framework for comparing computing generations, inspired by Mark Weiser.

4 Generation	Time frame	Human-computer ratio		Application	
			Canonical device	Initial	Follow-on
4	Mid-1930s	Many-1	Mainframe	Scientific calculation	Data processing
2	Late 1960s	1-1	PC	Spreadsheet	Database management, document processing
3	Late 1980s	1-many	Inch/foot/yard	Calendar and contact management, humanhuman communication	Location-based services, social media, app ecosystem, education
4	Mid-2000s	Many-many	Cloud/crowd/shroud	Personal navigation and entertainment	Health advisors, educational assistants, supply chain logistics

Four "generations" of computing

TABLE 1. A framework for comparing computing generations, inspired by Mark Weiser.

Generation	Time frame	Human-computer ratio	Canonical device	Application	
				Initial	Follow-on
1	Mid-1930s	Many-1	Mainframe	Scientific calculation	Data processing
2	Late 1960s	1-1	PC	Spreadsheet	Database management, document processing
3	Late 1980s	1-many	Inch/foot/yard	Calendar and contact management, humanhuman communication	Location-based services, social media, app ecosystem, education
4	Mid-2000s	Many-many	Cloud/crowd/shroud	Personal navigation and entertainment	Health advisors, educational assistants, supply chain logistics

Rank	System	Cores	(PFlop/s)	(PFlop/s)	(kW)	Top500
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	1,679.82	22,703	
2	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel DOE/SC/Argonne National Laboratory United States	4,742,808	585.34	1,059.33	24,687	
3	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Microsoft Azure United States	1,123,200	561.20	846.84		
4	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899	
5	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51	7,107	

	Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)	Top500 Nov. '23
	1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64 C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	1,679.82	22,703	
Rank	System			Cores	Rmax (PFlop/s)		Rpeak (PFlop/s)
3	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Microsoft Azure United States			1,123,200		561.20	846.84
	4	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2 GHz , Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899	
	5	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51	7,107	

	Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	$\begin{aligned} & \text { Power } \\ & \text { 5) } \end{aligned}$	Top500
	1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	1,679.82	2 22,703	
Rank	System			Cores		Rmax (PFlop/s)	Rpeak (PFlop/s)
3	Eagle - Mi NVIDIA H1 Microsoft United Sta	rosoft NDv5, Xeon Platinum 8480C 48C 2GHz O, NVIDIA Infiniband NDR, Microsoft zure es		1,123,2	0	561.20	846.84

Myth 12: All HPC Will Be Subsumed by the Clouds!

The rapidly advancing AI and new precision options has reignited the cloud discussion. The question whether clouds will subsume supercomputing has been ongoing for more than a decade, since the late 2000s Deelman et al. (2008), but remains inconclusive. Today's cloud offerings offer a wide spectrum for HPC customers, ranging from low-cost standard virtual machines to snecialized ton-oear HPC enuinment in

Al is emerging as "big science" in the tradition of nuclear and high energy physics

Model size (params)	Training tokens (round)	Training data used (estimate)
Chinchilla/		
70B	1.4 Trillion	2.3 TB
250B	5 Trillion	8.3TB
5008	10 Trillon	16.6 TB
$1 T$	20 Trillion	33.3 TB
10 T	200 Trillion	зз3тв
100T	2 Quadrillion	3.3PB
2501	5 Quadrillion	8.3PB
5007	10 Quadrillion	16.6PB

The scale of needed human and computational resources is beginning to reshape leadership in science

From: SC23 talk by Rick Stevens (Argonne National Lab)

From: SC23 talk by Rick Stevens (Argonne National Lab)

From: SC23 talk by Rick Stevens (Argonne National Lab)

From: SC23 talk by Rick Stevens (Argonne National Lab)

Q: Can these models be sparse?

A: Yes, but ML sparse is "fake" sparse.

Fig. 4. Typical test error vs. sparsity showing Occam's hill (network: ResNet-50 on Top-1 ImageNet).

Hoefler et al. (2021). "Sparsity in Deep Learning: ... arXiv:2102.00554
Frantar et al. (2023). "Scaling laws for sparsely-connected foundation models. arXiv:2309.08520v1

Fig. 4. Typical test error vs. sparsity showing Occam's hill (network: ResNet-50 on Top-1 ImageNet).

Hoefler et al. (2021). "Sparsity in Deep Learning: ... arXiv:2102.00554
Frantar et al. (2023). "Scaling laws for sparsely-connected foundation models. arXiv:2309.08520v1

Sparse mat-vec (SELL-C- σ) performance rises quickly with density

Sparse mat-vec (SELL-C- σ) performance rises quickly with density

Conclusion so far:
Q: What system will be built for HPC?
A: One for dense (and fake sparse) foundation models.

Q: What is an optimal machine for that case?

Mike Isaev (GT Ph.D.), Nic McDonald (NVIDIA), r. Vuduc (SC23)

Mike Isaev (GT Ph.D.), Nic McDonald (NVIDIA), R. Vuduc (SC23)

Canonical structure of a large language model

Figure 1: The transformer block structure of Megatron

Myriad ways to map an LLM to a machine...

(a) Data Parallelism

(b) Model Parallelism

(c) Layer Pipelining

Fig. 14. Neural Network Parallelism Schemes

Optimization	Year	Related system	Comp time	Comp util	Mem time	Mem cap	Mem BW	Net time	Net BW	range
Data parallelism (DP) [61]	1989	network	-	\uparrow	-	$\uparrow \uparrow \uparrow$	-	\uparrow	\uparrow	$1 .$. batch
DP overlap [25]	2017	network	\uparrow	\downarrow	-	-	-	$\downarrow \downarrow \downarrow$	-	true/false
Optimizer sharding [24]	2019	network	\downarrow	-	-	$\downarrow \downarrow$	-	-	-	true/false
Recompute [5, 10]	2000	compute	$\uparrow \uparrow$	-	-	$\downarrow \downarrow \downarrow$	-	-	-	full/attn/none
Fused layers [28]	2018	compute	-	$\uparrow \uparrow$	$\downarrow \downarrow$	$\downarrow \downarrow$	\downarrow	-	-	true/false
Microbatch training [13]	2019	compute	-	$\uparrow \uparrow$	-	$\uparrow \uparrow \uparrow$	-	-	-	1 .. batch/DP
Pipeline parallelism (PP) [7, 13]	2012	network	\uparrow	$\downarrow \downarrow$	-	$\downarrow \downarrow$	-	\uparrow	\uparrow	$1 .$. blocks
PP 1F1B schedule [7, 32]	2012	network	-	-	-	$\downarrow \downarrow$	-	-	-	true/false
PP interleaving [33]	2021	network	\downarrow	$\uparrow \uparrow$	-	\uparrow	-	\uparrow	$\uparrow \uparrow$	1 .. blocks/PP
PP RS + AG [21]	2022	network	-	-	-	-	-	\downarrow	$\downarrow \downarrow$	true/false
Tensor parallelism (TP) [7, 22, 49]	2012	network	$\downarrow \downarrow$	\downarrow	-	$\downarrow \downarrow$	$\downarrow \downarrow$	$\uparrow \uparrow \uparrow$	$\uparrow \uparrow \uparrow$	$1 .$. attn
TP RS + AG instead AR [33]	2021	network	-	-	\uparrow	\uparrow	-	\downarrow	\downarrow	true/false
Sequence parallelism (SP) [21]	2022	network	\downarrow	-	\downarrow	$\downarrow \downarrow$	\downarrow	\uparrow	\uparrow	true/false
TP redo for SP [21]	2022	network	-	-	-	\downarrow	-	\uparrow	\uparrow	true/false
TP overlap [58]	2022	network	\uparrow	\downarrow	-	-	-	$\downarrow \downarrow$	-	true/false
Weight offload [48]	2021	memory	-	-	\uparrow	$\downarrow \downarrow \downarrow$	\uparrow	-	-	true/false
Activation offload [48]	2021	memory	-	-	\uparrow	$\downarrow \downarrow \downarrow$	\uparrow	-	-	true/false
Optimizer offload [48]	2021	memory	-	-	\uparrow	\downarrow	\uparrow	-	-	true/false

Calculon results compared to State-of-the-Art

| FW pass | FW recompute |
| :--- | :--- | :--- |
| BW pass | TP comm |
| Optim step | PP comm |
| PP bubble | DP comm |

Mike Isaev (GT Ph.D.), Nic McDonald (NVIDIA), r. Vuduc (SC23)

Calculon results compared to State-of-the-Art

Mike Isaev (GT Ph.D.), Nic McDonald (NVIDIA), r. Vuduc (SC23)

Calculon results compared to State-of-the-Art

Mike Isaev (GT Ph.D.), Nic McDonald (NVIDIA), R. Vuduc (Sc23)

Q: What is an optimal machine for foundation models?

A: One tuned for dense compute ("big" procs) and slow communication, i.e., a litte HBM, a lot of slow capacity mem, fast on-node network, slow internode network.

Q: What is an optimal machine for foundation models?

A: One tuned for dense compute ("big" procs) and slow communication, i.e., a litte HBM, a lot of slow capacity mem, fast on-node network, slow internode network.

So, now what?

DESPITE EVERYTHING I JUST SAID THE FUTURE *SHOULD* BE SPARSE!

Recall:

$$
\mathcal{O}\left(N^{2}\right) \longrightarrow \mathcal{O}(N)
$$

Reduces energy: fewer flops, less storage

Recall:

$$
\mathcal{O}\left(N^{2}\right) \longrightarrow \mathcal{O}(N)
$$

\% time communicating increases

Algorithms for 2D Poisson Equation with N unknowns

Algorithm	Serial	PRAM	Memory	\#Procs	(Keyes '04)
- Dense LU	N^{3}	N	N^{2}	\mathbf{N}^{2}	
- Band LU	N^{2}	N	$\mathrm{N}^{3 / 2}$	N	1947
- Jacobi	N^{2}	N	N	N	1950
- Explicit Inv.	N^{2}	$\boldsymbol{\operatorname { l o g }} \mathbf{N}$	N^{2}	N^{2}	
- Conj.Grad.	$\mathrm{N}^{3 / 2}$	$N^{1 / 2} \log N$	N	N	1971
- RB SOR	$\mathrm{N}^{3 / 2}$	N ${ }^{1 / 2}$	N	N	
- Sparse LU	$\mathrm{N}^{3 / 2}$	N ${ }^{1 / 2}$	$N^{*} \log \mathrm{~N}$	N	~ 1970s
- FFT	$N^{*} \log N$	$\boldsymbol{\operatorname { l o g }} \mathrm{N}$	N	N	
- Multigrid	N	$\log ^{2} \mathbf{N}$	N	N	1984
- Lower bound	N	$\log N$	N		

PRAM is an idealized parallel model with zero cost communication

PRAM is an idealized parallel model with zero cost communication

Suggestion: Consider sparse LU (+ APSP) as a hardware design target (dense-ish \& sparse-ish)

An algorithm

A communication-avoiding sparse direct solver

Thesis: Significant, and even asymptotic, improvements in the strong scaling of
sparse direct solvers for linear systems and all-pairs shortest paths are possible
by trading more storage for less communication.

Piyush Sao
@piyush314 / ORNL

Xiaoye (Sherry) Li
LBNL

Ramki Kannan
ORNL

$A x=b$

$$
\operatorname{nnz}(A)=\mathcal{O}(N)
$$

$P A=L U$

$L=$ unit lower triangular
$U=$ upper triangular
$P=$ permutation (pivoting)

$$
\begin{aligned}
L y & =P b & & \text { (forward) } \\
U x & =y & & \text { (backward) }
\end{aligned}
$$

Aside: All-pairs shortest paths ~ LU but in the tropical semiring

```
FLoydWarshall( \(W\) )
\(1 \quad\) for \(1 \leq i, j \leq n\)
\(2 \quad c_{i, j} \leftarrow w_{i, j}\)
3 for \(1 \leq r \leq n\)
    for \(1 \leq i, j \leq n\)
\(5 \quad c_{i, j} \leftarrow c_{i, j} \oplus\left[c_{i, r} \odot c_{r, j}\right]\)
6 return \(C \equiv\left[c_{i, j}\right]\)
```


Same machinery applies! Reorderings, supernodes, elimination trees, data structures, distribution, GPUs, ... Gordon Bell Finalist (SC20 \& SC22)

Sparse LU has rich computational structure

Parallel dependencies = "elimination tree"

Same machinery applies! Reorderings, supernodes, elimination trees, data structures, distribution, GPUs, ... Gordon Bell Finalist (SC20 \& SC22)

E-tree is really a (fine-grained) task DAG

E-tree is really a (fine-grained) task DAG

Tasks have a complex mix of intensities (flop:byte)

1 flop:8 bytes

"2D" algorithm (strong scaling)

$\begin{array}{cccccccc}-1 & 0.036 & 0.044 & 0.055 & 0.065 & 0.064 & 0.073 & \begin{array}{l}\text { Teraflop/S } \\ (32 x \text { procs } \rightarrow 2 x \text { speedup) }\end{array} \\ 24 & 48 & 96 & 192 & 384 & 768 & \end{array}$
MPI processes (2D process grid; 4 cores / process)

\# MPI procs

Example:

$$
P_{x} \times P_{y}=96
$$

(Best configuration shown)

Teraflop/s

(32x procs $\rightarrow 2 x$ speedup)

MPI processes (2D process grid; 4 cores / process)

SaO: CA For Sorrse tu (2019-2022)

(communication avoidance)
All known "3D-LU" algorithms ${ }^{\dagger}$ are for dense LU. They reduce communication volume but increase latency.

For sparse LU, we can reduce both the latency and bandwidth for "planar" problems asymptotically, and achieve constant-factor reductions for "non-planar" ones.

There are other memory-for-communication techniques, \ddagger including multifrontal methods. We claim better memory and process scalability. See our papers!
\dagger Ashcraft (1991); Irony \& Toledo (2002); Solomonik \& Demmel (2011)
\ddagger Hulbert \& Zmijewski (1991); Gupta et al. (1997)

(For experts) How? Partition elimination tree among 2-D slides of a 3-D process grid

Piyush: Extend to sparse LU

Example:

$$
P_{x} \times P_{y}=96
$$

(Best configuration shown)

Teraflop/s

(32x procs $\rightarrow 2 x$ speedup)

MPI processes (2D process grid; 4 cores / process)

MPI processes (2D process grid; 4 cores / process)

MPI processes (2D process grid; 4 cores / process)

Summary

Assume that industry will not build you an efficient machine for your truly sparse computations.

Maybe we should band together around a common set of such computations that can drive hardware design projects. I have suggested sparse LU (sparse APSP) as one whose characteristics-semi-irregular parallelism, dynamic structure, variable intensity-makes it one "model problem" for co-design, but there can, and should, be many others, including yours!

Bonus / Outtakes / BTS

Why deep learning may be intrinsically "dense"

Multiple regression

$$
X \equiv\left[\begin{array}{ccccc}
\mid & \mid & \mid & & \mid \\
x_{i, 0} & x_{i, 1} & x_{i, 2} & \ldots & x_{i, n-1} \\
\mid & \mid & \mid & & \mid
\end{array}\right]
$$

~ Accuracy

~ Ops (~ time)

Linear regression example: Thompson et al., "The computational limits of deep learning" (July 2020). arXiv:2007.05558v1

More samples \rightarrow More accuracy, reasonable time

Linear regression example: Thompson et al., "The computational limits of deep learning" (July 2020). arXiv:2007.05558v1

Accuracy plateaus and costs rise

Linear regression example: Thompson et al., "The computational limits of deep learning" (July 2020). arXiv:2007.05558v1

With enough data, more accuracy but a high cost
~ Accuracy
2.5. Oracle
~ Ops (~ time)

Linear regression example: Thompson et al., "The computational limits of deep learning" (July 2020). arXiv:2007.05558v1

Better accuracy with fewer samples, but still expensive

Linear regression example: Thompson et al., "The computational limits of deep learning" (July 2020). arXiv:2007.05558v1

Chunxing Yin (GT Ph.D.), D. Zheng (Amazon), I. Nisrat, C. Faloutsos, G. Karypis, R. Vuduc.
"Nimble GNN embedding with tensor-train decomposition." In KDD'22. doi:10.1145/3534678.3539423

Chunxing Yin (GT Ph.D.), D. Zheng, et al.
"Nimble GNN embedding with tensor-train decomposition." In KDD'22. doi:10.1145/3534678.3539423

Communication avoidance 101

Communication-avoiding idea

For matrix multiplication, $\boldsymbol{C}+=\boldsymbol{A} \cdot \boldsymbol{B}$, on \boldsymbol{P} processors

Communication-avoiding idea

For matrix multiplication, $\boldsymbol{C}+=\boldsymbol{A} \cdot \boldsymbol{B}$, on \boldsymbol{P} processors

Communication-avoiding idea

For matrix multiplication, $\boldsymbol{C}+=\boldsymbol{A} \cdot \boldsymbol{B}$, on \boldsymbol{P} processors

	B	
		$N \times N$ matrices P processes
		Time for flops $\propto \frac{N^{3}}{P}$
A	C	

Communication-avoiding idea

For matrix multiplication, $\boldsymbol{C}+=\boldsymbol{A} \cdot \boldsymbol{B}$, on \boldsymbol{P} processors

2D process grid

Communication-avoiding idea

For matrix multiplication, $\boldsymbol{C}+=\boldsymbol{A} \cdot \boldsymbol{B}$, on \boldsymbol{P} processors

Communication-avoiding idea

For matrix multiplication, $\boldsymbol{C}+=\boldsymbol{A} \cdot \boldsymbol{B}$, on \boldsymbol{P} processors

Attained by Cannon's algorithm (1969), for instance

Communication-avoiding idea

For matrix multiplication, $\boldsymbol{C}+=\boldsymbol{A} \cdot \boldsymbol{B}$, on \boldsymbol{P} processors

Communication-avoiding idea

For matrix multiplication, $\boldsymbol{C}+=\boldsymbol{A} \cdot \boldsymbol{B}$, on \boldsymbol{P} processors

3D process grid
 $$
P=P_{x} \cdot P_{y} \cdot P_{z}
$$

Communication-avoiding idea

For matrix multiplication, $\boldsymbol{C}+=\boldsymbol{A} \cdot \boldsymbol{B}$, on \boldsymbol{P} processors

Idea: Use a 3-D process grid and replicate Dekel et al. (1981); Agarwal et al. (1995); + more

Communication-avoiding idea

For matrix multiplication, $\boldsymbol{C}+=\boldsymbol{A} \cdot \boldsymbol{B}$, on \boldsymbol{P} processors

Trades more memory for less communication

Piyush: CA for sparse LU

All known "3D-LU" algorithms ${ }^{\dagger}$ are for dense LU. They reduce communication volume but increase latency.

For sparse LU, we can reduce both the latency and bandwidth for "planar" problems asymptotically, and achieve constant-factor reductions for "non-planar" ones.

There are other memory-for-communication techniques, \ddagger including multifrontal methods. We claim better memory and process scalability. See our papers!
\dagger Ashcraft (1991); Irony \& Toledo (2002); Solomonik \& Demmel (2011)
\ddagger Hulbert \& Zmijewski (1991); Gupta et al. (1997)

An "iron law"

An Iron Law of Parallel and Distributed Computation

A modern cluster or supercomputer is, to first order, a collection of processing nodes. Each node has a processor ("xPU") and a two-level memory hierarchy. Nodes are connected by a network.

As a program executes on this system, it incurs two types of communication cost.
"Vertical" communication occurs in the memory system between, say, RAM and cache.
"Horizontal" communication occurs between nodes across the network.

An Iron Law of Parallel and Distributed Computation

A modern cluster or supercomputer is, to first order, a collection of processing nodes. Each node has a processor ("xPU") and a two-level memory hierarchy. Nodes are connected by a network.

As a program executes on this system, it incurs two types of communication cost.
"Vertical" communication occurs in the memory system between, say, RAM and cache.
"Horizontal" communication occurs between nodes across the network.

An Iron Law of Parallel and Distributed Computation

A modern cluster or supercomputer is, to first order, a collection of processing nodes. Each node has a processor ("xPU") and a two-level memory hierarchy. Nodes are connected by a network.

As a program executes on this system, it incurs two types of communication cost.
"Vertical" communication occurs in the memory system between, say, RAM and cache.
"Horizontal" communication occurs between nodes across the network.

(Asymptotic running time - rules-of-thumb)
(Asymptotic running time - rules-of-thumb)

Compute time

$W(n)$
P
(Asymptotic running time - rules-of-thumb)

Compute time

$W(n)$

P

P-fold
 speedup, ideally

(Asymptotic running time - rules-of-thumb)

Compute time

$W(n)$
 P

Memory

 time

P-fold speedup, ideally
(Asymptotic running time - rules-of-thumb)

Compute time

$\underline{W(n)}$
 P

Memory time

P-fold speedup, ideally

(Asymptotic running time - rules-of-thumb)

Compute time

Memory time

Network time

$W(n)$
 P

P-fold speedup, ideally

e.g.,

(Asymptotic running time - rules-of-thumb)

Compute time

$W(n)$
 P

P-fold speedup, ideally

Memory time

Network time

e.g.,

Asymptotic reduction
(Asymptotic running time - rules-of-thumb)

Compute time
 Memory time

Network time

DPUs in modern clusters

The basic building block of a distributedmemory cluster or supercomputer is a node.

Each node includes a host, which is a processor (xPU) + memory hierarchy.

The host can communicate with other hosts via its NIC (network interface controller).

A network connects the nodes. The nodes may be arranged in some topology, which determines the network's carrying capacity and cost.

In a smartNIC, the NIC becomes "host-like" via the addition of processing (ypu) and memory.

Node

Hypothetical: Multi-SmartNIC

One host xPU (16 cores)

Mem
$\$$
xPU

Hypothetical: Multi-SmartNIC

One host xPU (16 cores)

657 GF/s

Hypothetical: Multi-SmartNIC

One host xPU (16 cores)

657 GF/s
 76.8 GB/s

Hypothetical: Multi-SmartNIC

$$
657 \text { GF/s }
$$

$$
76.8 \text { GB/s }
$$

Hypothetical: Multi-SmartNIC

$$
\begin{aligned}
& 657 \mathrm{GF} / \mathrm{s} \\
& 76.8 \mathrm{~GB} / \mathrm{s}
\end{aligned}
$$

Hypothetical: Multi-SmartNIC

Hypothetical: Multi-SmartNIC

One host xPU (16 cores)

~ 8.5 F:B
$8 \times$ BF-2 yPUs (no host)

Hypothetical: Multi-SmartNIC

One host xPU (16 cores)

Time = "1"
using all cores
$8 \times$ BF-2 yPUs (no host)

Speedup ~ 1.7x

Real measurement on MiniMD!

What else could one build?

Power allocation for an "optimal" matrix multiply machine

Power allocation for an "optimal" matrix multiply machine

ORNL Summit (13-14 MW):
67.0\% GPU compute 14.9\% CPU compute
4.8\% memory
5.3\% network + disk

8\% node overhead

System Power (MW)

Power allocation for an "optimal" 3D FFT machine?

Power allocation for an "optimal" 3D FFT machine

3D FFT vs. "Stencil" machines

Relative time (slowdown)

Relative time (slowdown)

Relative time (slowdown)

of the applications. AGILE system designs must emphasize optimization of the fully integrated system rather than independent optimization of individual functionalities (e.g., memory, computation, or communication), and must not be constrained by existing component interfaces and protocols, legacy architectures, or current practices.
A fundamental rethinking of computer architectures that can revitalize performance growth trends in computing capabilities is long overdue. Currently, there is a renewed interest in developing specialized hardware components. However, this approach will not resolve the fundamental data movement challenges that restrict the historical performance growth trends. The AGILE program will seed a new generation

The AGILE BAA was released in November 2021 and the program is slated to run for three years.

TESTING AND EVALUATION PARTNERS

- Lawrence Berkeley National Laboratory
- Sandia National Laboratory
- Pacific Northwest National Laboratory

KEYWORDS

- Computer Architecture
- Data analytics
- Co-Design
- Data movement
- Modeling and simulation

