
Reordering Library

Deliverable No: D2.3
Deliverable Title: Reordering Library
Deliverable Publish Date: 30 April 2023

Project Title: SparCity: An Optimization and Co-design Framework for
Sparse Computation

Call ID: H2020-JTI-EuroHPC-2019-1
Project No: 956213

Project Duration: 36 months
Project Start Date: 1 April 2021

Contact: sparcity-project-group@ku.edu.tr

List of partners:

Participant no. Participant organisation name Short name Country
1 (Coordinator) Koç University KU Turkey
2 Sabancı University SU Turkey
3 Simula Research Laboratory AS Simula Norway
4 Instituto de Engenharia de Sistemas e Computadores, INESC-ID Portugal

Investigação e Desenvolvimento em Lisboa
5 Ludwig-Maximilians-Universität München LMU Germany
6 Graphcore AS (until M21) Graphcore Norway

i

Ref. Ares(2023)3054587 - 02/05/2023

contents

1 Introduction 1

1.1 Objectives of This Deliverable 1

1.2 Work Performed 1

1.3 Deviations and Counter Measures 2

1.4 Resources 2

2 Sparse Matrix Reorderings 3

3 Reordering Algorithms 4

3.1 Taxonomy of Reordering Algorithms 4

3.1.1 Bandwidth-Reducing Orderings. 4

3.1.2 Fill-Reducing Orderings. 5

3.1.3 (Hyper)graph partitioning-based orderings. 5

3.1.4 Other Orderings 6

3.2 SpMV Kernels 6

3.3 Matrix features for reordering 7

3.4 Reordering Algorithms Implemented 8

4 Experimental Evaluation 9

4.1 Experimental setup 9

4.2 Reordering for 1D SpMV 9

4.3 Reordering for 2D SpMV 11

4.4 In-depth performance analysis 12

4.5 Matrix features and metric analysis 15

4.6 Fill-in for sparse Cholesky factorisation 16

4.7 Reordering overhead 16

5 Conclusions 17

6 History of Changes 20

ii

1 introduction

The SparCity project is funded by EuroHPC JU (the European High Performance Computing
Joint Undertaking) under the 2019 call of Extreme Scale Computing and Data Driven Technologies
for research and innovation actions. SparCity aims to create a supercomputing framework
that will provide efficient algorithms and coherent tools specifically designed for maximizing
the performance and energy efficiency of sparse computations on emerging High Performance
Computing (HPC) systems, while also opening up new usage areas for sparse computations in
data analytics and deep learning.

Sparse computations are commonly found at the heart of many important applications, but at
the same time it is challenging to achieve high performance when performing the sparse compu-
tations. SparCity delivers a coherent collection of innovative algorithms and tools for enabling
high efficiency of sparse computations on emerging hardware platforms. More specifically, the
objectives of the project are:

• to develop a comprehensive application and data characterization mechanism for sparse
computation based on the state-of-the-art analytical and machine-learning-based perfor-
mance and energy models,

• to develop advanced node-level static and dynamic code optimizations designed for mas-
sive and heterogeneous parallel architectures with complex memory hierarchy for sparse
computation,

• to devise topology-aware partitioning algorithms and communication optimizations to boost
the efficiency of system-level parallelism,

• to create digital SuperTwins of supercomputers to evaluate and simulate what-if hardware
scenarios,

• to demonstrate the effectiveness and usability of the SparCity framework by enhancing
the computing scale and energy efficiency of challenging real-life applications.

• to deliver a robust, well-supported and documented SparCity framework into the hands
of computational scientists, data analysts, and deep learning end-users from industry and
academia.

1.1 objectives of this deliverable

The objective of this deliverable is to provide a technical overview of the reordering library
produced within WP2, as well as the analysis performed using this library.

1.2 work performed

The following software was created to facilitate sparse matrix reordering:

1. Source code for Libmtx 0.4.0, which can be used to perform matrix reordering with Reverse
Cuthill-McKee, Nested Dissection and Graph Partitioning based on METIS.

2. Source code for a utility that can be used to perform matrix reordering with Hypergraph
Partitioning based on PaToH.

3. Source code for SparseBase 0.3.1, which can be used to perform matrix reordering with
Approximate Minimum Degree and Gray order.

SparCity 1

4. Source code for SpMV with two different kernels for matrices in compressed sparse row
(CSR) format.

5. Source code for sparse Cholesky factorization and for counting fill-in.

6. Source code for computing matrix features.

To explain the performance behaviors, we devise a set of metrics and order-dependent matrix
features and attempt to correlate them with the reordering performance. These features include
objectives that matrix reordering algorithms attempt to minimise, such as matrix bandwidth,
profile and others, as well as the amount of load imbalance in parallel SpMV.

1.3 deviations and counter measures

There are no noteworthy deviations from the original work plan.

1.4 resources

The software for the reordering libray, along with our experimental results, can be found at:
Trotter, James D. (2023). Software for ”Bringing Order to Sparsity: A Sparse Matrix Reordering
Study on Multicore CPUs” (1.0.0). Zenodo. https://doi.org/10.5281/zenodo.7837264

SparCity 2

2 sparse matrix reorderings

Sparse matrices arise from a wide variety of problems in scientific computing, graph theory,
finance, and deep learning. Sparse matrix reordering is an optimization technique used to improve
the efficiency of operations on sparse matrices by rearranging their rows and columns. Matrix
reordering serves many purposes. It can be used to achieve lower work and storage requirements,
improve data locality and cache reuse, expose additional parallelism or improve the effectiveness
of other optimization techniques. Sparse direct solvers rely heavily on appropriate orderings to
reduce fill-in during factorization, whereas iterative solvers can benefit from reordering through
improved data locality.

Various reordering algorithms1 have been proposed over the years. In the case of sparse direct
solvers, it is well known that the right ordering can drastically reduce the number of operations
required to perform factorisation.2 For sparse matrix-vector multiplication (SpMV), one of the
most frequently encountered sparse matrix operations, there are some examples of reordering
being used to significantly improve performance (e.g., by a factor of 3.6×3). However, reordering
faces several challenges, including the difficulty of finding an optimal ordering, matrices already
having an efficient ordering, or the new ordering causing performance degradation by introducing
load imbalance in parallel computations. Additionally, orderings that benefit one architecture
may not be useful or even harmful for others.

To demonstrate this with a concrete example, Figure 1 displays a few matrices with their orig-
inal sparsity patterns, along with their patterns after applying three frequently used reorderings.
Additionally, the figure indicates the speedup (or slowdown) of SpMV over the unordered matrix
in two different platforms. The figure highlights three main observations: (i) different reorderings
lead to a diverse distribution of matrix nonzeros, which consequently results in significant per-
formance improvement or degradation depending on the algorithm-matrix pair; (ii) although a
reordering algorithm can enhance the performance of one matrix, it may reduce the performance
of another; (iii) the efficacy of a reordering algorithm depends on the architecture.

1E. Cuthill and J. McKee. “Reducing the Bandwidth of Sparse Symmetric Matrices”. Proceedings of the 1969 24th
National Conference. Association for Computing Machinery, 1969, pp. 157–172. doi: 10.1145/800195.805928; Wai-
Hung Liu and Andrew H Sherman. “Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee
ordering algorithms for sparse matrices”. SIAM Journal on Numerical Analysis 13.2 (1976), pp. 198–213; Patrick R.
Amestoy, Timothy A. Davis, and Iain S. Duff. “Algorithm 837: AMD, an Approximate Minimum Degree Ordering
Algorithm”. ACM Trans. Math. Softw. 30.3 (2004), pp. 381–388. issn: 0098-3500. doi: 10.1145/1024074.1024081;
Alan George. “Nested Dissection of a Regular Finite Element Mesh”. SIAM Journal on Numerical Analysis 10.2 (1973),
pp. 345–363. doi: 10.1137/0710032; Alan George and Joseph WH Liu. “The evolution of the minimum degree
ordering algorithm”. SIAM Review 31.1 (1989), pp. 1–19; J. R. Gilbert and R. E. Tarjan. “The Analysis of a Nested
Dissection Algorithm”. Numer. Math. 50.4 (1987), pp. 377–404. issn: 0029-599X. doi: 10.1007/BF01396660; Haoran
Zhao et al. “Exploring Better Speculation and Data Locality in Sparse Matrix-Vector Multiplication on Intel Xeon”. 2020
IEEE 38th International Conference on Computer Design (ICCD). 2020, pp. 601–609. doi: 10.1109/ICCD50377.2020.00105.

2Patrick R. Amestoy et al. “Analysis and Comparison of Two General Sparse Solvers for Distributed Memory
Computers”. ACM Trans. Math. Softw. 27.4 (2001), pp. 388–421. issn: 0098-3500. doi: 10.1145/504210.504212.

3Zhao et al., “Exploring Better Speculation and Data Locality in Sparse Matrix-Vector Multiplication on Intel Xeon”.

SparCity 3

https://doi.org/10.1145/800195.805928
https://doi.org/10.1145/1024074.1024081
https://doi.org/10.1137/0710032
https://doi.org/10.1007/BF01396660
https://doi.org/10.1109/ICCD50377.2020.00105
https://doi.org/10.1145/504210.504212

Original RCM ND GP

0.6× / 0.5× 2.0× / 1.2× 2.0× / 1.1×

2.8× / 1.3× 1.2× /0.6× 3.0× / 1.1×

2.0× / 1.5× 1.0× / 0.5× 0.7× / 1.3×

Figure 1 Matrices reordered with Reverse Cuthill-McKee (RCM), Nested Dissection (ND) and graph parti-
tioning (GP). The numbers below represent speedup (or slowdown) of SpMV on 64-core AMD Epyc Milan and
36-core Intel Ice Lake CPUs, respectively.

3 reordering algorithms

For describing reordering algorithms, we need to define some key terminology. Many reordering
strategies arise from linear solvers where certain features of sparse matrices are desirable. The
bandwidth of a sparse matrix is the width of the diagonal band that contains its nonzero elements,
whereas the profile is a sum of distances from the leftmost element to the diagonal of each row (see
Section 3.3). In sparse matrix factorization, fill-in refers to the appearance of additional nonzero
elements in the factorization compared to the original matrix.

3.1 taxonomy of reordering algorithms

To provide an overview, we categorise reordering algorithms into 1) bandwidth-reducing order-
ings, 2) fill-reducing orderings 3) graph and hypergraph partitioning-based orderings, and 4)
other orderings.

3.1.1 bandwidth-reducing orderings.

Well-known examples of such orderings include the Cuthill-McKee (CM) algorithm4 and the
method described by Gibbs et al..5 The CM ordering attempts to reduce the matrix bandwidth
through a breadth-first search of the undirected graph corresponding to a symmetric sparse
matrix. The vertices of the graph, which correspond to rows and columns of the matrix, are
ordered by choosing a starting vertex (e.g., by finding a pseudo-peripheral vertex6) and then
traversing the graph in breadth-first search order, where the vertices at each level are sorted in
ascending order by degree. In the end, after traversing the entire graph, the ordering may be

4Cuthill and McKee, “Reducing the Bandwidth of Sparse Symmetric Matrices”.
5Norman E. Gibbs, William G. Poole, and Paul K. Stockmeyer. “An Algorithm for Reducing the Bandwidth and

Profile of a Sparse Matrix”. SIAM Journal on Numerical Analysis 13.2 (1976), pp. 236–250. issn: 00361429.
6Alan George and Joseph W. H. Liu. “An Implementation of a Pseudoperipheral Node Finder”. ACM Transactions

on Mathematical Software 5.3 (1979), pp. 284–295. doi: 10.1145/355841.355845.

SparCity 4

https://doi.org/10.1145/355841.355845

reversed to obtain the more commonly used Reverse Cuthill-McKee (RCM)7 ordering.

3.1.2 fill-reducing orderings.

Minimum degree orderings8 arise in the context of reducing fill-in during sparse Cholesky
factorisation. The elimination graph of a sparse symmetric matrix consists of a vertex for every
row, as well as edges between any pair of vertices a and b for which row a has a nonzero above
the diagonal in column b. At each step of the factorisation, one row is eliminated by removing
a vertex and its edges in the elimination graph, and replacing it with a clique consisting of the
former neighbours of the vertex. The new edges that are created by forming such a clique lead to
fill-in of the Cholesky factor. The minimum degree algorithm is a graph-based heuristic to find
node orderings with low amounts of fill by always selecting a vertex of least degree.

Another commonly used fill-reducing ordering is Nested dissection (ND),9 which is based
on computing a vertex separator for the undirected graph of a symmetric sparse matrix. The
two subgraphs that arise from removing the separator are ordered first, while rows and columns
corresponding to the separator are moved to the end of the matrix. This process is applied
recursively for the two subgraphs. The underlying motivation for the ND ordering is that it
incurs low fill-in for sparse Cholesky factorization if the separators are small. Since the method
relies on graph partitioning, it can be grouped under graph partitioning-based orderings as well.

3.1.3 (hyper)graph partitioning-based orderings.

Graph partitioning can be used to define an ordering by directly partitioning a matrix into a
given number of parts, then grouping rows and columns by their assigned parts. This approach
is frequently used in a distributed-memory setting to perform work division of sparse matrix
operations, and the same idea can be applied to the shared-memory case.

METIS10 is a well-known graph partitioning tool that can be used to partition large irregular
graphs. It is based on the multilevel paradigm which consists of the graph coarsening, initial
partitioning, and uncoarsening phases. The aim of the partitioning is to minimize a partitioning
objective, while obeying a load balancing criteria.

Hypergraph partitioning may similarly be used for reordering. PaToH11 is a commonly-used
hypergraph partitioning tool which is known to reflect the actual communication volume require-
ment of parallel SpMV. Hypergraphs are the generalization of graphs, in which the hyperedges
(nets) can be incident to any number of vertices instead of exactly two vertices in simple graphs.
The hypergraph partitioning problem is the task of dividing a hypergraph into roughly balanced
parts such that the cutsize is minimized. Other reorderings based on hypergraph partitioning
include the separated block diagonal form proposed by Yzelman and Bisseling.12

7Liu and Sherman, “Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee ordering algorithms
for sparse matrices”.

8Alan George and David R. McIntyre. “On the Application of the Minimum Degree Algorithm to Finite Element
Systems”. SIAM Journal on Numerical Analysis 15.1 (1978), pp. 90–112. issn: 00361429. url: http://www.jstor.org/
stable/2156565; George and Liu, “The evolution of the minimum degree ordering algorithm”; Amestoy, Davis, and
Duff, “Algorithm 837: AMD, an Approximate Minimum Degree Ordering Algorithm”.

9George, “Nested Dissection of a Regular Finite Element Mesh”; Gilbert and Tarjan, “The Analysis of a Nested
Dissection Algorithm”.

10George Karypis and Vipin Kumar. “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs”.
SIAM Journal on Scientific Computing 20.1 (1998), pp. 359–392. doi: 10.1137/S1064827595287997.

11U.V. Catalyurek and C. Aykanat. “Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector
multiplication”. IEEE Transactions on Parallel and Distributed Systems 10.7 (1999), pp. 673–693. doi: 10.1109/71.780863.

12A. N. Yzelman and Rob H. Bisseling. “Cache-Oblivious Sparse Matrix–Vector Multiplication by Using Sparse
Matrix Partitioning Methods”. SIAM Journal on Scientific Computing 31.4 (2009), pp. 3128–3154. doi: 10.1137/

SparCity 5

http://www.jstor.org/stable/2156565
http://www.jstor.org/stable/2156565
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1109/71.780863
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243

3.1.4 other orderings

A number of alternative matrix orderings have been proposed with the goal of improving data
locality in SpMV, including approaches based on the travelling salespesrson problem13 and
space-filling curves.14 One particular method, which we call Gray ordering,15 is motivated by
microarchitectural concerns to reduce branch mispredictions and improve data locality for SpMV.
First, to improve branch prediction, rows with similar nonzero density are grouped together
(density reordering). Second, to improve locality, a bitmap-based reordering is applied, where
each row is segmented into multiple sections of nonzeros (to construct the row bitmaps), which
are then labeled and ordered based on the Gray code.16 In general, the matrix is first split into
dense and sparse submatrices according to the number of nonzeros in each row, while the density
and bitmap reorderings are applied depending on the characteristics of each submatrix.

3.2 spmv kernels

As the primary evaluation criterion of reordering algorithms, we assess the performance of sparse
matrix-vector multiplication (SpMV) with shared-memory parallel kernels based on the popular
compressed sparse row (CSR) format.

A sparse matrix A with M rows and N columns is defined by its K nonzeros, which we
denote aik,jk for k = 1, 2, . . . ,K, where ik and jk are the row and column offsets of the kth
nonzero, respectively. Any sparse matrix storage format must somehow store the row and column
offsets as well as the nonzero values. The well-known CSR format groups nonzeros by rows in
ascending order, and then compresses the row offsets to form row pointers, r1, r2, . . . , rM+1, such
that ri and ri+1 − 1 indicate the location of the first and last nonzeros of row i, respectively.
Thus, multiplying A by a vector x to obtain another vector y amounts to computing the sum
yi ← yi +

∑ri+1−1

k=ri
aik,jkxjk , for every row i = 1, 2, . . . ,M.

The standard method for performing the above SpMV computation in parallel is by partition-
ing the rows into equal-sized, contiguous blocks and assigning one block to each thread. (This
is easily achieved in OpenMP with a single #pragma omp for directive.) We refer to this as the
1D algorithm. Although this scheme is simple and works well in some cases, it suffers from load
imbalance for many realistic sparse matrices due to the nonzeros being unevenly divided among
threads.

As a result, we also consider a second SpMV kernel which is still based on the CSR storage
format, but offers a more balanced workload among threads. Rather than partitioning the rows,
we instead perform an equal partitioning of the matrix nonzeros. This produces a balanced
workload among threads, at least in terms of nonzeros. Loop scheduling must now be performed
manually, since the built-in loop scheduling directives of OpenMP are no longer sufficient. In
addition, this approach requires each thread to handle its first and final row specially to avoid

080733243.
13Ali Pinar and Michael T. Heath. “Improving Performance of Sparse Matrix-Vector Multiplication”. Proceedings

of the 1999 ACM/IEEE Conference on Supercomputing. Portland, Oregon, USA: Association for Computing Machinery,
1999. doi: 10.1145/331532.331562; D.B. Heras et al. “Modeling and improving locality for the sparse-matrix–vector
product on cache memories”. Future Generation Computer Systems 18.1 (2001), pp. 55–67. issn: 0167-739X. doi:
10.1016/S0167-739X(00)00075-3.

14Leonid Oliker et al. “Effects of Ordering Strategies and Programming Paradigms on Sparse Matrix Computations”.
SIAM Review 44.3 (2002), pp. 373–393. doi: 10.1137/S00361445003820.

15Zhao et al., “Exploring Better Speculation and Data Locality in Sparse Matrix-Vector Multiplication on Intel Xeon”.
16Sardar Anisul Haque and Shahadat Hossain. “A Note on the Performance of Sparse Matrix-vector Multiplication

with Column Reordering”. 2009 International Conference on Computing, Engineering and Information. 2009, pp. 23–26.
doi: 10.1109/ICC.2009.40.

SparCity 6

https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1145/331532.331562
https://doi.org/10.1016/S0167-739X(00)00075-3
https://doi.org/10.1137/S00361445003820
https://doi.org/10.1109/ICC.2009.40

Table 1 Sparse matrix reordering algorithms used in this study

Name Reordering Algorithm Description

RCM20 Reverse Cuthill–McKee bandwidth reduction via breadth-first graph traversal
AMD21 Approximate minimum degree local greedy strategy to reduce fill by selecting sparsest pivot row
ND22 Nested dissection recursive divide-and-conquer using vertex separators to reduce fill
GP23 Graph partititoning METIS multi-level recursive graph partitioning with edge-cut objective
HP24 Hypergraph partititoning column-net hypergraph partitioning with PaToH using cut-net metric
Gray25 Gray code ordering splitting of sparse and dense rows and Gray code ordering

race conditions when updating the output vector y. We call this the 2D algorithm.
Our 2D algorithm is closely related to and may be considered a simplified version of the merge-

based SpMV kernel of Merrill and Garland.17 Both of these kernels entail a small preprocessing
cost to find the balanced partitioning. Even for the more elaborate merge-based kernel, this
cost is small enough to keep 2D algorithms competitive. Furthermore, for a given matrix and
architecture, this represents a one time cost and can thus easily be amortized over multiple SpMV
iterations. Therefore, we ignore this cost in our measurements.

In addition to the reordering code, we provide a custom implementation of the 1D and 2D
algorithms for testing. Parallelization is achieved via OpenMP using static scheduling. Since
our experimental platforms are large NUMA machines, we use the first-touch policy to ensure
that the data is placed close to the core using it.

3.3 matrix features for reordering

We define four matrix features that depend heavily on matrix ordering. These metrics are
bandwidth, profile, off-diagonal nonzero count, and load imbalance factor, and they are later used
to explain the effect of reordering particularly with respect to SpMV performance.

The bandwidth and profile give an indication of whether nonzeros are clustered near the main
diagonal, which in turn may lead to better data locality for SpMV.18 For an N-by-N sparse matrix
A, the bandwidth is the largest distance of any nonzero to the main diagonal, maxai,j ̸=0 |i− j|,
whereas the profile19 is a sum over every row of the distance from the leftmost entry to the
diagonal,

∑N
i=1

i− min
{
j | ai,j ̸= 0

}
.

Assuming that the matrix is partitioned into N-by-N equal-sized blocks, we count the total
number of nonzeros that do not fall into any diagonal blocks. We call this the off-diagonal
nonzero count, and it is essentially the same as the edge-cut metric which is minimised by graph
partitioning, if one assumes that rows are divided equally among the threads, as in the 1D SpMV
algorithm.

Finally, to capture effects of load imbalance in shared-memory parallel SpMV, we also consider
a load imbalance factor. This is defined as the ratio of the maximum number of nonzeros assigned
to a single thread to the average number of nonzeros per thread. Thus, if every thread has the
same number of nonzeros, the imbalance factor is 1. On the other hand, a thread having twice
the number of nonzeros compared to the average yields an imbalance factor of 2.

17Duane Merrill and Michael Garland. “Merge-Based Sparse Matrix-Vector Multiplication (SpMV) Using the CSR
Storage Format”. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. Association for Comput-
ing Machinery, 2016. doi: 10.1145/2851141.2851190.

18O. Temam and W. Jalby. “Characterizing the behavior of sparse algorithms on caches”. Supercomputing ’92:
Proceedings of the 1992 ACM/IEEE Conference on Supercomputing. 1992, pp. 578–587. doi: 10.1109/SUPERC.1992.236646.

19Gibbs, Poole, and Stockmeyer, “An Algorithm for Reducing the Bandwidth and Profile of a Sparse Matrix”.

SparCity 7

https://doi.org/10.1145/2851141.2851190
https://doi.org/10.1109/SUPERC.1992.236646

3.4 reordering algorithms implemented

For this study, we have chosen a diverse set of reordering algorithms with relatively different
objectives for evaluation. Table 1 gives an overview of our chosen algorithms. We employ the
Reverse Cuthill-McKee (RCM) algorithm,26 which is obtained by simply reversing the usual
Cuthill-McKee ordering and is known to work better in practice when used for factorising sym-
metric, positive definite matrices.

From the fill-in reducing group, variations of the minimum degree reordering algorithm are
often used in practice, such as multiple minimum degree (MMD)27 and approximate minimum
degree (AMD).28 We chose the latter that is based on merely approximating the degree of a vertex,
which reduces the runtime complexity. For the AMD and ND orderings, we use reordering
routines from SuiteSparse29 and METIS30 libraries, respectively.

Next, we include a graph partitioning-based reordering, which will be referred to as GP. For
GP, we also use METIS, which offers two options for the partitioning objective. The first one
is edge-cut, i.e., the number of edges connecting vertices in different partitions, and the second
is total communication volume. With respect to partitioning a sparse matrix, the load balance
criteria can be chosen to balance the number of rows or the number of nonzeros within the parts.
The latter is achieved by weighting each vertex in the graph by the number of nonzeros in the
corresponding row. For this study, we use the edge-cut objective and an unweighted graph which
implies balancing the number of rows in each part. Moreover, the number of parts to be created
by the partitioner is chosen to match the number of CPU cores for the hardware used in this
study (see Table 2) by partitioning into 16, 32, 48, 64, 72 or 128 parts.

We also include a hypergraph partitioning reordering, which will be referred to as HP. In HP,
we employ PaToH with the column-net model in which the rows and columns of the coefficient
matrix are represented with vertices and nets, respectively. PaToH includes two metrics that can
be used as the partitioning objective, namely cut-net and connectivity metrics. In the column-net
model, the former metric corresponds to minimizing the number of nonzero column segments,
while the latter corresponds to minimizing the off-diagonal nonzero count. In HP, we adopt the
128-way partitioning of matrices using PaToH with cut-net metric and the same balancing criteria
as in GP.

The final algorithm is the Gray code ordering using the parameters suggested by Zhao er
al.,31 meaning that 16 bits are used for bitmap-ordering and rows with more than 20 nonzeros
are considered to be dense.

26Liu and Sherman, “Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee ordering algorithms
for sparse matrices”.

27George and Liu, “The evolution of the minimum degree ordering algorithm”.
28Amestoy, Davis, and Duff, “Algorithm 837: AMD, an Approximate Minimum Degree Ordering Algorithm”.
29Ibid.
30Karypis and Kumar, “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs”.
31Zhao et al., “Exploring Better Speculation and Data Locality in Sparse Matrix-Vector Multiplication on Intel Xeon”.

SparCity 8

Table 2 Hardware used in our experiments.

Skylake Ice Lake Naples Rome Milan A Milan B TX2 Hi1620

CPUs Intel
Xeon
Gold
6130

Intel
Xeon
Plat-
inum

8360Y

AMD
Epyc
7601

AMD
Epyc

7302P

AMD
Epyc
7413

AMD
Epyc
7763

Cavium
TX2

CN9980

HiSilicon
Kunpeng
920-6426

Instr. set x86-64 x86-64 x86-64 x86-64 x86-64 x86-64 ARMv8.1 ARMv8.2
Microarch. Skylake Ice Lake Zen Zen 2 Zen 3 Zen 3 Vulcan TaiShan

v110
Sockets 2 2 2 1 2 2 2 2
Cores 2× 16 2× 36 2× 32 1× 16 2× 24 2× 64 2× 32 2× 64

Freq. [GHz] 1.9–3.6 2.4–3.5 2.7–3.2 1.5–3.3 2.5–3.5 2.5–3.5 2.0–2.5 2.6
L1I/core [KiB] 32 32 64 32 32 32 32 64
L1D/core [KiB] 32 48 32 32 32 32 32 64
L2/core [KiB] 1024 1280 512 512 512 512 256 512
L3/socket
[MiB]

22 54 64 16 128 256 32 64

Bandwidth [GB/s] 256 409.6 342 204.8 409.6 409.6 342 342

4 experimental evaluation

4.1 experimental setup

The hardware used in our experiments is shown in Table 2. All codes are compiled with GCC
11.2.0 with the -O3 and -march=native options on each node, and the test systems are running
Ubuntu 18.04.6.

Our evaluation relies on the SuiteSparse Matrix Collection.32 We apply the six reorderings
(see Table 1) to 490 matrices that are square, non-complex and have between 1 million and
1 billion nonzeros. On converting the matrices to CSR format, column offsets are stored as 32-bit
integers and nonzero values as double precision floating point numbers. In the case of symmetric
matrices, whenever an offdiagonal nonzero is encountered, two nonzeros are inserted into the
CSR representation, one in the upper and another in the lower triangle of the matrix.

Each SpMV run is repeated 100 times, and we take the maximum performance among the
runs. This represents the peak performance of a system with a warm cache and is less susceptible
to noise than the average. Note that for smaller matrices used in our evaluation, some or all of
the data may fit in last-level cache. For example, the AMD Epyc 7763 has the largest last-level
cache at a total of 512 MiB. Only 77 matrices have more than 45 million nonzeros, which is the
minimum size needed to exceed the capacity of the last-level cache if matrices are stored in CSR
format.

4.2 reordering for 1d spmv

Prior to reordering, we observe that the performance of the 1D SpMV algorithm varies greatly
from one matrix to another, as expected. As an example, the typical range for the 128-core Milan B
is about 50–120 Gflop/s with a median value of about 80 Gflop/s. Our first experiment measures

32Timothy A. Davis and Yifan Hu. “The University of Florida Sparse Matrix Collection”. ACM Trans. Math. Softw.
38.1 (2011). issn: 0098-3500. doi: 10.1145/2049662.2049663.

SparCity 9

https://doi.org/10.1145/2049662.2049663

0.1

1

10

Skylake Ice Lake Naples Rome Milan A Milan B TX2 Hi1620

sp
ee

du
p

RCM ND AMD GP HP Gray

Figure 2 Speedup of sparse matrix-vector multiplication using 1D algorithm after reordering. For each box,
the middle line represents the median and endpoints represent the lower and upper quartiles.

the SpMV speedup using the 1D algorithm for all reorderings compared to the original ordering,
using all 490 matrices in the test set. Figure 2 illustrates the results for all architectures. Note that
some outliers are not shown to save space.

The distribution of speedups vary considerably between different reordering techniques. On
the other hand, the overall picture is roughly the same regardless of the hardware used. Every
ordering has outliers with extreme speedup or slowdown. The greatest slowdown is a factor of
0.05×, whereas the largest speedup is about 40×. If we disregard outliers and consider only the
portion between the lower and upper quartiles (i.e., the coloured boxes, which comprises half of
the matrices and thus the most typical case), then the speedup ranges from about 0.5 to 1.5×.

With respect to the various orderings, the median speedups of RCM, GP and HP are greater
than 1, meaning that SpMV performance improves for more than 50 % of the matrices. Addi-
tionally, GP is best with speedup for about 75 % of matrices on every CPU and more matrices
achieving higher speedups. This is closely followed by HP, which shows slightly smaller speedups
in general and performs noticeably worse on Naples in particular. Next, the median speedups of
ND and AMD are close to 1 or slightly less than 1, respectively. These methods are thus equally
likely to yield a speedup as they are to result in a slowdown. Finally, the Gray ordering stands
out by resulting in slowdowns in most cases. On Skylake in particular, 75 % of matrices reordered
with Gray experience a slowdown of 0.9× or worse.

We also compute the geometric mean over the speedups in order to provide a better overview.
Results are given in Table 3. They clearly shows that graph partitioning provides far better SpMV

SparCity 10

Table 3 Geometric mean of the speedups of the different reorderings and architectures compared to the original
order for all 490 matrices in the 1D algorithm.

1D RCM AMD ND GP HP Gray Mean

Skylake 1.054 0.933 0.990 1.189 1.099 0.700 0.981
Ice Lake 1.039 0.939 0.981 1.183 1.100 0.744 0.987
Naples 1.025 0.939 0.978 1.206 1.083 0.757 0.988
Rome 1.032 0.946 0.989 1.197 1.089 0.767 0.994
Milan A 1.039 0.956 0.992 1.198 1.096 0.771 1.000
Milan B 1.048 0.963 0.999 1.212 1.110 0.778 1.009
TX2 1.060 0.969 1.007 1.224 1.123 0.768 1.015
Hi1620 1.061 0.973 1.007 1.228 1.128 0.772 1.017

Mean 1.045 0.952 0.993 1.205 1.103 0.757 0.999

0.5

1

1.5

2

2.5

Skylake Ice Lake Naples Rome Milan A Milan B TX2 Hi1620

sp
ee

du
p

RCM AMD ND GP HP Gray

Figure 3 Speedup of the nonzero-balanced CSR SpMV kernel (2D algorithm) after reordering.

performance than the alternatives.

4.3 reordering for 2d spmv

As discussed in Section 3.2, the 1D algorithm does not ensure load balance. We thus repeat the
above experiment for the 2D SpMV algorithm. Results are shown in Figure 3.

Compared to the 1D algorithm, there are fewer and less extreme outliers and the impact of
reordering is less pronounced for most architectures. Moreover, the difference between reorder-
ing strategies is smaller. On the other hand, the ARM-based CPUs, TX2 and Hi1620, benefit
immensely, especially from RCM, ND, and GP. Hi1620 also benefits from Gray ordering in this
case. However, we note that the initial performance of both 1D and 2D algorithms on the ARM
CPUs is quite low, with median values of 20–30 Gflop/s. We suspect that further tuning and im-
proved compiler support would improve instruction-level parallelism and alleviate performance
bottlenecks of the ARM CPUs.

While the 2D algorithm creates a perfect load balance with respect to the number of nonzeros

SparCity 11

Table 4 Geometric mean of the speedups of the different reorderings and architectures compared to the original
order for all 490 matrices in the 2D algorithm.

2D RCM AMD ND GP HP Gray Mean

Skylake 1.081 0.909 1.034 1.090 0.892 0.906 0.982
Ice Lake 1.043 0.979 1.007 1.088 0.959 0.899 0.994
Naples 1.026 1.005 1.018 1.112 1.003 0.909 1.010
Rome 1.038 1.017 1.028 1.106 1.015 0.920 1.019
Milan A 1.058 1.034 1.036 1.111 1.029 0.908 1.027
Milan B 1.074 1.050 1.045 1.123 1.040 0.899 1.036
TX2 1.134 1.059 1.100 1.186 1.049 0.893 1.066
Hi1620 1.197 1.062 1.160 1.250 1.051 0.944 1.106

Mean 1.080 1.013 1.052 1.132 1.003 0.910 1.029

per thread, execution time may not be fully balanced if cache locality differs in different parts of
the matrix and thus in different threads. For that reason, the 2D algorithm can be slower than
the 1D algorithm in rare cases. Nonetheless, the 2D algorithm typically observes a considerable
speedup over the 1D algorithm for many matrices. For example, for 25 % of the matrices on the
Rome processor, a speedup of more than 1.1× or more is observed when comparing the 2D and
1D algorithms with the same ordering, and the largest speedup for an individual matrix is about
10×. Since all other CPUs have more cores, most of their speedups are even higher.

The geometric mean of the speedups is shown in Table 4. The numbers show that most
algorithms improve while the speedups of GP and HP are reduced compared to 1D. GP is still
superior, but HP drops from second place to second to last place, with only Gray giving weaker
results.

To understand this result, remember that RCM, ND, AMD and also Grey do not provide load
balancing. Once this drawback is removed, it becomes clear that RCM and ND provide good
cache reuse. Thus, these reorderings are much stronger when using a 2D algorithm.

4.4 in-depth performance analysis

The previously presented results show that the obtainable speedups greatly vary across different
matrices, algorithms and platforms. To better capture the dynamics of this complex interaction,
we now present an in-depth analysis that aims to uncover what are the most common execution
scenarios that result in performance improvement (or degradation), and what are the major causes
for that behaviour.

We identified 6 classes of common execution scenarios, and Figure 4 analyzes SpMV perfor-
mance with respect to representative matrices from each class, 3 platforms from different vendors
(AMD, Intel and ARM), both 1D and 2D SpMV algorithms and all 6 reordering schemes. Classes 1,
2 and 3 depict different scenarios where reordering improves performance, in Class 4 no significant
performance difference is observed, while reordering in Classes 5 and 6 degrades performance
when compared to the original matrix.

Class 1 covers cases where the original and reordered matrices are load balanced, and signifi-
cant speedups are observed for both 1D and 2D algorithms. This is seen in Figure 4, where the
original and almost all reordered 333SP matrices from Class 1 have an imbalance factor (IF) of 1.0
for the 1D runs. (Due to its nature, load balancing with the 2D algorithm is guaranteed, i.e., its
imbalance factor is always 1.0 and it does not depend on matrix features.), suggesting that Class 1
reorderings do not have significant impact on load balancing. As such, the speedups obtained for
both 1D and 2D runs mainly demonstrate the ability of the reordering schemes to provide better

SparCity 12

CLASS 1
DIMACS10: 333SP

CLASS 2
VLSI: nv2

CLASS 3
GHS_psdef: audikw_1

CLASS 4
Fluorem: HV15R

CLASS 5
Belcastro: human_gene1

CLASS 6
Gleich: wb-edu

1

2

3

1

2

1

2

3

4

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

AMD Epyc 7763
AMD Zen2 (Milan-B)

Intel Xeon Platinum 8360Y
Intel Ice Lake

HiSilicon Kunpeng 920-6426
ARM v8.2 (TaiShan v110)

1D 2D

RCM

1D 2D

AMD

1D 2D

ND

1D 2D

GP

1D 2D

HP

1D 2D

GRAY

1.0 1.0 1.0 1.0 1.0 1.4Imbalance
Factor

1.0 1.1 1.2 1.0 1.0 1.4 1.1 1.3 1.9 1.1 1.1 2.3 1.1 1.2 1.1 1.2 1.2 1.1 5.6 3.4 3.3 2.9 3.2 3.2 2.4 1.9 4.3 2.1 2.4 8.8

1.0 1.0 1.0 1.0 1.0 1.4Imbalance
Factor

1.0 1.0 1.1 1.0 1.0 1.4 1.1 1.3 1.6 1.0 1.1 2.3 1.0 1.1 1.1 1.2 1.1 1.2 5.7 3.2 3.2 2.6 3.0 3.1 2.2 1.5 1.9 1.5 2.1 8.6

1.0 1.0 1.0 1.0 1.0 1.4Imbalance
Factor

1.0 1.1 1.2 1.0 1.0 1.4 1.1 1.3 1.9 1.1 1.1 2.3 1.1 1.2 1.1 1.2 1.2 1.1 5.6 3.4 3.3 2.9 3.2 3.2 2.4 1.9 4.3 2.1 2.4 8.8

original: 1.0 original: 1.4 original: 2.3 original: 1.1 original: 2.3 original: 2.1

original: 1.0 original: 1.4 original: 2.3 original: 1.1 original: 2.0 original: 1.7

original: 1.0 original: 1.4 original: 2.3 original: 1.1 original: 2.3 original: 2.1

Figure 4 Performance analysis of matrix classes for different reordering schemes, SpMV algorithms and
platforms.

data locality and cache reuse. A notable exception in Figure 4 is Gray reordering, which induces
some load imbalance (IF=1.4), resulting in marginal improvements (AMD and Intel platforms) or
even performance degradation (ARM).

A similar scenario can be observed for Class 2 (see nv2 in Figure 4), where reordering addi-
tionally provides better load balancing (notice the reduction in IF from the original 1.4). Since,
in Class 2, the speedups are still observed for both 1D and 2D runs, it showcases the ability of
reordering schemes to provide better data locality and load balancing. In contrast, reordering of
Class 3 matrices (see audikw 1 in Figure 4) can mainly improve the load balancing, since speedups
are only observed for the 1D runs (no performance changes for 2D).

In Class 4, original and reordered matrices deliver similar performance for both 1D and 2D
runs. As shown for HV15R in Figure 4, reordering does not significantly impact load balancing,
thus suggesting that both original and reordered matrices are equally capable of exploiting the
data locality (e.g., data fits in cache either way). On the other hand, Class 5 shows that the
reordered matrices can provoke load imbalance in 1D execution, thus resulting in performance
degradation, which does not occur in the inherently load-balanced 2D runs. Finally, Class 6
depicts the case where different reordering schemes can diversely impact SpMV performance,
indicating a need for new approaches to efficient matrix reordering.

As shown in Figure 4, it is worth noting that the matrices from different classes maintain very
similar behaviour across all three platforms. However, the range of attainable speedups is highly
affected by the platform specifics, e.g., the highest range is offered in the ARM system, followed
by the AMD and Intel platforms.

SparCity 13

1 1.2 1.4 1.6 1.8 2

Bandwidth relative to the best

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
ra

ct
io

n
of

 M
at

ric
es

1 1.2 1.4 1.6 1.8 2

Profile relative to the best

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 1.2 1.4 1.6 1.8 2

Off-diagonal nnz relative to the best

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 M
at

ric
es

1 1.1 1.2 1.3 1.4 1.5

SpMV time (MILAN B) relative to the best

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Original
RCM
AMD
ND
GP
HP
Gray

Figure 5 Performance profiles comparing bandwidth, profile, off-diagonal nonzero count and SpMV runtime.

SparCity 14

0.1

1

10

100

1000

10000 original
RCM

ND
AMD

GP
HP

Figure 6 Nonzero ratio in Cholesky factor L to nonzeros in A = LLT for different orderings. The middle line
in each box is the median, whereas the endpoints of each box correspond to the lower and upper quartiles.

4.5 matrix features and metric analysis

Figure 5 depicts performance profile33 plots to compare different methods in terms of bandwidth,
profile, off-diagonal nonzero count, and SpMV runtime relative to the best performing one for
each instance. A point (x,y) on a profile means that the respective model is within x factor of the
best result for a fraction y of the instances. For example, the point (1.10, 0.80) on the curve of GP
means that for 80 % of the matrices, SpMV with GP is at most 10 % slower than the best SpMV
time obtained by any method. Therefore, a curve closer to the top left corner is interpreted as
better.

In Figure 5, in terms of reducing the bandwidth, it is seen that RCM is the clear winner while
being the best method for almost 80 % of the matrices. The success of RCM in reducing bandwidth
is expected since it is primarily exploited for that purpose. What might be more surprising is that
all the other methods are worse than the original ordering in that regard. As for reducing the
matrix profile, we see ND as the best method closely followed by RCM. Regarding the nonzero
count in off-diagonal blocks, GP is the winner with the best performance for nearly 65 % of the
instances. This is expected since GP with edge-cut objective is directly aims to minimize the
off-diagonal nonzero count. The second method in that regard is HP, which can also be expected
since cut-net objective aims to minimize off-diagonal nonzero segments, thus having an indirect
yet strong relation with this metric.

Finally, considering the performance profile for SpMV runtimes in Figure 5, it most closely
resembles the performance profile for the off-diagonal nonzero count. This suggests that the
off-diagonal nonzero count is a much more important feature than profile and bandwidth with
respect to SpMV performance. Here, we again see GP and HP as our first and second most
effective methods. One important leap belongs to RCM, which is seen as the third best method in
reducing SpMV time, while being not that successful in reducing the off-diagonal nonzero count.
This might be explained by the superior success of RCM in reducing bandwidth, which might
increase cache reuse and hence serve the SpMV effectiveness indirectly. Meanwhile, we expect
the success of ND for reducing profile to be more effective in its performance for reducing fill-in,
as we will observe in Section 4.6.

It is clear that SpMV performance benefits most from the reordering methods that reduce the
number of nonzeros in off-diagonal blocks most.

33Elizabeth D Dolan and Jorge J Moré. “Benchmarking optimization software with performance profiles”. Mathemat-
ical programming 91.2 (2002), pp. 201–213.

SparCity 15

Table 5 Time (in seconds) to reorder a matrix on Ice Lake. For comparison, execution time of a single CSR
SpMV iteration using 72 threads is also shown.

Matrix Name RCM ND AMD Gray METIS PaToH SpMV

delaunay n24 5.3 210 18.6 2.9 10.9 125 0.010
europe osm 15.4 437 18.9 7.5 31.5 151 0.013
Flan 1565 1.1 18.3 2.5 0.2 4.7 120 0.004
HV15R 6.5 118 8.3 0.3 31.5 429 0.011
indochina-2004 30.9 163 80.3 2.0 29.6 219 0.072
kmer V1r 117 2 915 5 047 64.2 1 333 7 865 0.084
kron g500-logn21 59.4 183 366 1.3 229 22 382 0.010
mycielskian19 24.4 131 80.1 3.1 739 177 0.132
nlpkkt240 14.3 869 71.7 4.9 53.8 1 040 0.035
vas stokes 4M 4.2 146 17.0 1.2 22.6 243 0.010

4.6 fill-in for sparse cholesky factorisation

We computed the fill-in created by sparse Cholesky factorisation using the row counting algorithm
of Gilbert et al.34 for symmetric, positive definite matrices in SuiteSparse with different orderings.
The Gray code ordering is not included, since it does not preserve symmetry and therefore cannot
be used for this factorisation. Figure 6 compares matrix orderings with respect to the ratio of
nonzeros in the Cholesky factor L to nonzeros in A = LLT for 78 of the largest matrices.

As expected, the fill-reducing orderings, AMD and ND, produce the least fill-in. While RCM,
GP and HP are considerably less effective, they still typically produce better results than the
original ordering. With respect to the features discussed in Section 4.5, other matrix features may
be needed to explain the reduction of fill-in due to reordering.

4.7 reordering overhead

To compare the cost of different reorderings, Table 5 shows the reordering time on Ice Lake
(see Table 2) for a few representative matrices. Roughly speaking, Gray ordering is always
fastest and RCM is usually the second fastest, whereas HP and ND are typically the slowest.
Although we believe the implementations of the chosen reordering algorithms to be reasonably
efficient, we note that they are currently all serial and there may be room for further performance
optimizations.

Depending on the matrix and ordering algorithm, the time required for reordering ranges
from a few hundred to several million SpMV operations with the unreordered matrix using 72

cores on the same machine. To achieve overall savings from reordering, the number of SpMV
operations performed must exceed the ratio of the reordering time to the difference between
the unreordered and reordered SpMV. For example, reordering europe osm with RCM takes 15.4
seconds and improves SpMV performance by 22 % on Ice Lake. Since a single SpMV iteration
before reordering takes 0.013 seconds, then approximately 15.4/(0.013× (1 − 1/1.22)) ≈ 6 569

SpMV iterations are needed to save time overall. The reordering cost is high, but in the context
of scientific computing it can often be amortised over thousands or millions of SpMV iterations
with the same matrix in the course of a simulation.

34John R. Gilbert, Esmond G. Ng, and Barry W. Peyton. “An Efficient Algorithm to Compute Row and Column
Counts for Sparse Cholesky Factorization”. SIAM Journal on Matrix Analysis and Applications 15.4 (1994), pp. 1075–1091.
doi: 10.1137/S0895479892236921.

SparCity 16

https://doi.org/10.1137/S0895479892236921

5 conclusions

We have presented our reordering library that includes the six most prominent reordering algo-
rithms. Through extensive experiments, we show the impact of these reordering and identify
graph partitioning as the most effective one for SpMV reorderings. This library constitutes an
important building block of the SparCity sparse matrix toolset.

SparCity 17

references

Amestoy, Patrick R., Timothy A. Davis, and Iain S. Duff. “Algorithm 837: AMD, an Approximate
Minimum Degree Ordering Algorithm”. ACM Trans. Math. Softw. 30.3 (2004), pp. 381–388.
issn: 0098-3500. doi: 10.1145/1024074.1024081.

Amestoy, Patrick R. et al. “Analysis and Comparison of Two General Sparse Solvers for Distributed
Memory Computers”. ACM Trans. Math. Softw. 27.4 (2001), pp. 388–421. issn: 0098-3500. doi:
10.1145/504210.504212.

Catalyurek, U.V. and C. Aykanat. “Hypergraph-partitioning-based decomposition for parallel
sparse-matrix vector multiplication”. IEEE Transactions on Parallel and Distributed Systems 10.7
(1999), pp. 673–693. doi: 10.1109/71.780863.

Cuthill, E. and J. McKee. “Reducing the Bandwidth of Sparse Symmetric Matrices”. Proceedings
of the 1969 24th National Conference. Association for Computing Machinery, 1969, pp. 157–172.
doi: 10.1145/800195.805928.

Davis, Timothy A. and Yifan Hu. “The University of Florida Sparse Matrix Collection”. ACM
Trans. Math. Softw. 38.1 (2011). issn: 0098-3500. doi: 10.1145/2049662.2049663.

Dolan, Elizabeth D and Jorge J Moré. “Benchmarking optimization software with performance
profiles”. Mathematical programming 91.2 (2002), pp. 201–213.

George, Alan. “Nested Dissection of a Regular Finite Element Mesh”. SIAM Journal on Numerical
Analysis 10.2 (1973), pp. 345–363. doi: 10.1137/0710032.

George, Alan and Joseph W. H. Liu. “An Implementation of a Pseudoperipheral Node Finder”.
ACM Transactions on Mathematical Software 5.3 (1979), pp. 284–295. doi: 10.1145/355841.
355845.

— “The evolution of the minimum degree ordering algorithm”. SIAM Review 31.1 (1989), pp. 1–
19.

George, Alan and David R. McIntyre. “On the Application of the Minimum Degree Algorithm
to Finite Element Systems”. SIAM Journal on Numerical Analysis 15.1 (1978), pp. 90–112. issn:
00361429. url: http://www.jstor.org/stable/2156565.

Gibbs, Norman E., William G. Poole, and Paul K. Stockmeyer. “An Algorithm for Reducing the
Bandwidth and Profile of a Sparse Matrix”. SIAM Journal on Numerical Analysis 13.2 (1976),
pp. 236–250. issn: 00361429.

Gilbert, J. R. and R. E. Tarjan. “The Analysis of a Nested Dissection Algorithm”. Numer. Math.
50.4 (1987), pp. 377–404. issn: 0029-599X. doi: 10.1007/BF01396660.

Gilbert, John R., Esmond G. Ng, and Barry W. Peyton. “An Efficient Algorithm to Compute Row
and Column Counts for Sparse Cholesky Factorization”. SIAM Journal on Matrix Analysis and
Applications 15.4 (1994), pp. 1075–1091. doi: 10.1137/S0895479892236921.

Haque, Sardar Anisul and Shahadat Hossain. “A Note on the Performance of Sparse Matrix-
vector Multiplication with Column Reordering”. 2009 International Conference on Computing,
Engineering and Information. 2009, pp. 23–26. doi: 10.1109/ICC.2009.40.

Heras, D.B. et al. “Modeling and improving locality for the sparse-matrix–vector product on cache
memories”. Future Generation Computer Systems 18.1 (2001), pp. 55–67. issn: 0167-739X. doi:
10.1016/S0167-739X(00)00075-3.

Karypis, George and Vipin Kumar. “A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs”. SIAM Journal on Scientific Computing 20.1 (1998), pp. 359–392. doi: 10.
1137/S1064827595287997.

Liu, Wai-Hung and Andrew H Sherman. “Comparative analysis of the Cuthill-McKee and the
reverse Cuthill-McKee ordering algorithms for sparse matrices”. SIAM Journal on Numerical
Analysis 13.2 (1976), pp. 198–213.

SparCity 18

https://doi.org/10.1145/1024074.1024081
https://doi.org/10.1145/504210.504212
https://doi.org/10.1109/71.780863
https://doi.org/10.1145/800195.805928
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1137/0710032
https://doi.org/10.1145/355841.355845
https://doi.org/10.1145/355841.355845
http://www.jstor.org/stable/2156565
https://doi.org/10.1007/BF01396660
https://doi.org/10.1137/S0895479892236921
https://doi.org/10.1109/ICC.2009.40
https://doi.org/10.1016/S0167-739X(00)00075-3
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997

Merrill, Duane and Michael Garland. “Merge-Based Sparse Matrix-Vector Multiplication (SpMV)
Using the CSR Storage Format”. ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. Association for Computing Machinery, 2016. doi: 10.1145/2851141.2851190.

Oliker, Leonid et al. “Effects of Ordering Strategies and Programming Paradigms on Sparse Matrix
Computations”. SIAM Review 44.3 (2002), pp. 373–393. doi: 10.1137/S00361445003820.

Pinar, Ali and Michael T. Heath. “Improving Performance of Sparse Matrix-Vector Multiplica-
tion”. Proceedings of the 1999 ACM/IEEE Conference on Supercomputing. Portland, Oregon, USA:
Association for Computing Machinery, 1999. doi: 10.1145/331532.331562.

Temam, O. and W. Jalby. “Characterizing the behavior of sparse algorithms on caches”. Supercom-
puting ’92: Proceedings of the 1992 ACM/IEEE Conference on Supercomputing. 1992, pp. 578–587.
doi: 10.1109/SUPERC.1992.236646.

Yzelman, A. N. and Rob H. Bisseling. “Cache-Oblivious Sparse Matrix–Vector Multiplication by
Using Sparse Matrix Partitioning Methods”. SIAM Journal on Scientific Computing 31.4 (2009),
pp. 3128–3154. doi: 10.1137/080733243.

Zhao, Haoran et al. “Exploring Better Speculation and Data Locality in Sparse Matrix-Vector
Multiplication on Intel Xeon”. 2020 IEEE 38th International Conference on Computer Design
(ICCD). 2020, pp. 601–609. doi: 10.1109/ICCD50377.2020.00105.

SparCity 19

https://doi.org/10.1145/2851141.2851190
https://doi.org/10.1137/S00361445003820
https://doi.org/10.1145/331532.331562
https://doi.org/10.1109/SUPERC.1992.236646
https://doi.org/10.1137/080733243
https://doi.org/10.1109/ICCD50377.2020.00105

6 history of changes

Version Author(s) Date Comment
0.5 Johannes Langguth 28.04.2023 Initial draft
0.5.1 Didem Unat 02.05.2023 Final version for submission

Table 6 Document History of Changes

SparCity 20

	Introduction
	Objectives of This Deliverable
	Work Performed
	Deviations and Counter Measures
	Resources

	Sparse Matrix Reorderings
	Reordering Algorithms
	Taxonomy of Reordering Algorithms
	Bandwidth-Reducing Orderings.
	Fill-Reducing Orderings.
	(Hyper)graph partitioning-based orderings.
	Other Orderings

	SpMV Kernels
	Matrix features for reordering
	Reordering Algorithms Implemented

	Experimental Evaluation
	Experimental setup
	Reordering for 1D SpMV
	Reordering for 2D SpMV
	In-depth performance analysis
	Matrix features and metric analysis
	Fill-in for sparse Cholesky factorisation
	Reordering overhead

	Conclusions
	History of Changes

