
Visualization Tools

Deliverable No: D4.3
Deliverable Title: Visualization Tools
Deliverable Publish Date: 30 June 2023

Project Title: SparCity: An Optimization and Co-design Framework for
Sparse Computation

Call ID: H2020-JTI-EuroHPC-2019-1
Project No: 956213

Project Duration: 36 months
Project Start Date: 1 April 2021

Contact: sparcity-project-group@ku.edu.tr

List of partners:

Participant no. Participant organisation name Short name Country
1 (Coordinator) Koç University KU Turkey
2 Sabancı University SU Turkey
3 Simula Research Laboratory AS Simula Norway
4 Instituto de Engenharia de Sistemas e Computadores, INESC-ID Portugal

Investigação e Desenvolvimento em Lisboa
5 Ludwig-Maximilians-Universität München LMU Germany
6 Graphcore AS* Graphcore Norway

*until M21.

i

Ref. Ares(2023)4557074 - 30/06/2023

contents

1 Introduction 1

1.1 Objectives of this Deliverable 1

1.2 Deviations and Counter Measures 1

1.3 Resources 1

2 SparCity Visualization Tools 3

2.1 Visualization Structures on the Backend 4

2.2 Profiling Capabilities 8

2.2.1 Observation Interface 8

2.3 Modelling Capabilities 9

2.4 Visualization Framework 11

2.4.1 Grafana 11

2.4.2 Generating Grafana Panels using SuperTwin 12

2.5 SuperTwin Web Application 20

2.6 Contributions by Each Partner 22

2.7 Deviations (if Any) 22

3 History of Changes 24

ii

1 introduction

The SparCity project is funded by EuroHPC JU (the European High Performance Computing
Joint Undertaking) under the 2019 call of Extreme-Scale Computing and Data-Driven Technologies
for research and innovation actions. SparCity aims to create a supercomputing framework
that will provide efficient algorithms and coherent tools specifically designed for maximizing
the performance and energy efficiency of sparse computations on emerging High-Performance
Computing (HPC) systems, while also opening up new usage areas for sparse computations in
data analytics and deep learning.

Sparse computations are commonly found at the heart of many important applications, but
at the same time, it is challenging to achieve high performance when performing sparse compu-
tations. SparCity delivers a coherent collection of innovative algorithms and tools for enabling
high efficiency of sparse computations on emerging hardware platforms. More specifically, the
objectives of the project are:

• to develop a comprehensive application and data characterization mechanism for sparse
computation based on the state-of-the-art analytical and machine-learning-based perfor-
mance and energy models,

• to develop advanced node-level static and dynamic code optimizations designed for mas-
sive and heterogeneous parallel architectures with complex memory hierarchy for sparse
computation,

• to devise topology-aware partitioning algorithms and communication optimizations to boost
the efficiency of system-level parallelism,

• to create digital SuperTwins of supercomputers to evaluate and simulate what-if hardware
scenarios,

• to demonstrate the effectiveness and usability of the SparCity framework by enhancing
the computing scale and energy efficiency of challenging real-life applications.

• to deliver a robust, well-supported and documented SparCity framework into the hands
of computational scientists, data analysts, and deep learning end-users from industry and
academia.

1.1 objectives of this deliverable

The objective of this deliverable is to provide a technical overview of the research activities carried
out

1.2 deviations and counter measures

1.3 resources

The following is the list of websites that host software and data repositories that have so far been
developed for the SparCity framework. It is expected that these websites will later receive a
more coherent organization.

• Deliverables that are public are available in the project website

http://sparcity.eu

SparCity 1

http://sparcity.eu

• Source code developed in this project is available at the project github repository

https://github.com/sparcityeu

• A repository of sparse problem instances

https://datasets.simula.no/sparcity

SparCity 2

https://github.com/sparcityeu
https://datasets.simula.no/sparcity

2 sparcity visualization tools

Digital Twins are used to provide a digital projection of cyber-physical systems via describing
data-emitting sources and relationships between physical systems components. Collections of
methodologies that are used to describe these pieces of information are called ontologies. Some of
the well-known ontologies are SOSA (Sensor, Observation, Sample, Actuator),1 which is used to
describe industrial pipelines, and FOAF (Friend of a Friend), which is used to describe relations
among people. Moreover, there are several vocabularies used to describe digital twins, such
as RDF (Resource Description Framework) and OWL (Web Ontology Language). Ontologies
using these vocabularies allow static information to be located and queried using web interfaces
via SPARQL endpoints. These frameworks are widely used to represent web-based interactions.
Digital twins of HPC systems or computers, in general, have to differ from other physical entity
twins due to several reasons; (1) there are (usually) much more sensors for each subdomain of
the physical system, (2) each sensor can report up to thousands of metrics, and metrics from the
same sensor can vary even for the same system, and (3) when counting processes as a component
of the system, even components change rapidly.

Linked data is used to generate a network of discrete and distinct entities in order to enable
queries and complex analysis over different domains of data sources and interoperability. Linked
data is widely adopted in web technologies and used in different science branches for knowledge
management, such as biology2 and physics.3 RDF is a standard for data exchange graph data on
the web. In the context of RDF data, an edge is referred to as a triple and consists of a source
node (called a subject), an edge name (called a predicate), and a target node (called an object). An
RDF graph is defined as a set of RDF triples that follow this structure. On top of this structure,
RDFs have identifiers, called IRIs to unambiguously identify and properties to describe the nodes.
JSON-LD is a notation used to express RDF data using JSON syntax. This means a JSON-LD
document is both a JSON document and an RDF document. JSON-LD has ”ld attributes”, which
separates JSON-LD from ordinary JSON. Most relevant of these attributes are; @context, @id
and type. With these attributes, we know what a JSON-LD dictionary describes, what kind of
datatypes it includes, and how to parse and process them. This is an important aspect since, in
turn, it allows create big and interconnected systems from building blocks. Albeit very useful
in creating knowledge graphs, these ontologies are designed and used to keep static metadata.
New triples need to be injected into the graph to add new data points, making these types of
ontologies impractical with using time-series data without modification.4

In SuperTwin, linked data paradigm employing JSON-LD is used to encode pointers and
parameters of collected time-series data into SuperTwin Description and generate dashboard for
different components or runs of systems, provide instant cross-comparison capabilities.

1Janowicz. “SOSA: A lightweight ontology for sensors, observations, samples, and actuators”. Journal of Web
Semantics 56 (2019), pp. 1–10. issn: 1570-8268. doi: https://doi.org/10.1016/j.websem.2018.06.003. url:
https://www.sciencedirect.com/science/article/pii/S1570826818300295.

2Xin. “Cross-linking BioThings APIs through JSON-LD to facilitate knowledge exploration”. BMC Bioinformatics 19

(2018). doi: 10.1186/s12859-018-2041-5.
3Xiaoli Chen. “CERN Analysis Preservation: A Novel Digital Library Service to Enable Reusable and Reproducible

Research”. Research and Advanced Technology for Digital Libraries. Springer International Publishing, 2016, pp. 347–356.
4Friedemann. “Linked Data Architecture for Assistance and Traceability in Smart Manufacturing”. MATEC Web of

Conferences 304 (2019), p. 04006. doi: 10.1051/matecconf/201930404006.

SparCity 3

https://doi.org/https://doi.org/10.1016/j.websem.2018.06.003
https://www.sciencedirect.com/science/article/pii/S1570826818300295
https://doi.org/10.1186/s12859-018-2041-5
https://doi.org/10.1051/matecconf/201930404006

2.1 visualization structures on the backend

Digital Twin Description Language is developed by Microsoft and is a derivation of RDF. DTDL
is made up of six metamodel classes that describe the context of digital twin components.
These classes are; Interfaces, Telemetry, Properties, Commands, Relationships and Data

Types. In DTDL, every Interface is a digital twin on its own, with its contents describing its
Properties, Telemetry, and Relationships. When combined, these enable to capture of the
hierarchical structure of a computer and model of every single component (e.g., CPU, GPU, mem-
ory subsystem, etc.) as a separate digital twin entity. The idea that every interface is considered
a digital twin on its own is heavily exploited in SuperTwin. In SuperTwin, STD both; captures a
semantic description of the target system and enables a linked time-series structure similar to the
framework proposed in5 but with far richer metadata and contemporary metadata instantiations
of events. For example, individual components, observations, and processes also have their digital
twin descriptions with linked time-series data. This enables a fine-grain analysis of the behavior
of applications to run on different systems with different software and hardware. For example, an
L1 cache, a network interface, or a process could be isolated from the system, analyzed separately,
or compared with its equivalent on a different system.

DTDL have a recursive structure that allows components (interfaces in the context of twin
description) to be other components’ subcomponents which is crucial for describing a cyber-
physical system. However, since DTDL is designed with IOT systems in mind, its descriptions
are more physical (emphasising spatial relations, for example a switch is on the wall) than cyber-
physical and are meant to be static. To this end, DTDL is modified, and new classes and properties
are added to describe high-performance computing systems and create linked time-series data.
The updates made on existing DTDL to acquire part of STD ontology can be seen in Table 1.

5Friedemann, “Linked Data Architecture for Assistance and Traceability in Smart Manufacturing”.

SparCity 4

Property Description

@type Interface
@id Unique identifier within digital twin for interface

contents
a set of Interface, Process Interface, ObservationInterface, SWTelemetry,
HWTelemetry, Benchmark, Properties, Relationships

displayName Name to be displayed when instantiated
dashboard dashboard url, optional

@type SWTelemetry
@id Unique identifier within digital twin for this telemetry instance
name index in telemetries
instance instance name of reported component to be a parameter in queries
samplerName name of the metric to be referred to during sampler configuration
DBName name of the metric to be used in the generation of queries

@type HWTelemetry
@id Unique identifier within digital twin for this telemetry instance
name index in telemetries
instance instance name of the reported component to be a parameter in queries
samplerName name of the metric to be referred to during sampler configuration
DBName name of the metric to be used in the generation of queries

PMUName
name of the metric as reported by libpfm4. To be used as parameter
in perf event configuration

@type BenchmarkInterface
@id Unique identifier within digital twin for interface
contents BenchmarkResult
displayName Name of the benchmark to be displayed when instantiated

@type BenchmarkResult
@id Unique identifier within digital twin for this telemetry instance
field name of field for subkernels, optional
no threads number of threads used
involved threads involved thread indexes to be used in queries
modifier modifications in pinning strategy or compilation
result result of benchmark
unit unit of benchmark result
sampled sw metrics sampled software metrics during execution, to be used in queries, optional
sampled hw metrics sampled hardware metrics during execution, to be used in queries, optional
dashboard dashboard url of observed metrics, optional

@type ObservationInterface
@id Unique identifier within digital twin for interface
displayName Name to be displayed when instantiated
time duration of observation
command executed command
tag tag of affiliated data in the database
no threads number of threads used
involved threads involved thread indexes to be used in queries
sampled sw metrics sampled software metrics during execution, to be used in queries
sampled hw metrics sampled hardware metrics during execution, to be used in queries
modifier any modification made to the environment, optional
dashboard dashboard url of observed metrics, optional

Table 1 New metamodel classes added to DTDL to build STD. There is also a model named
ProcessInterface, which is in shape identical to Interface; however, its content fields are re-assigned
every time the corresponding process’s pid is changed.

SparCity 5

Figure 1 Current status of SuperTwin modules.

The current status of the SuperTwin modules can be seen in Figure 1. Different colors in the
figure highlight different pipelines of operations. A SuperTwin Description (STD) is generated
after a probing of the target system. During the probing, information from the environment
and other collaboratively used frameworks such as Grafana, InfluxDB and Performance Co-Pilot
is fused with components of the target system. This STD includes every component of the
target system and the parameters for the time-series data they generate. A twin description
manager module appends new information collected from the system, re-instantiates parameters
for rapidly changing components, such as executed benchmarks and processes and keep STD up
to date with the corresponding system. Data collection framework is configured and launched by
SuperTwin daemon using STD and necessary information to query this information is appended
to STD as well. After data collection starts, dashboard generation module is able to generate
dashboards automatically and on demand. These dashboards could visualize system features,
live and historical data and combinations of them. Since every STD uses the same syntax, a
data-link between different STDs that belong to different systems make their data available to
each other for comparison and further analysis. To be able to have a data-link, a user needs to
either possess STD of both systems and the data that is extracted via ObservationInterfaces or
password for the specific machine’s data from a remote InfluxDB instance.

SparCity 6

Listing 1: A (very small) subset of SuperTwin Description.
{

” t w i n d e s c r i p t i o n ” : {
”dtmi : dt : dolap : system : S1 ; 1” : {

”@type” : ” I n t e r f a c e ” ,
”@id” : ”dtmi : dt : dolap : system : S1 ; 1” ,
” @context ” : ”dtmi : dtdl : contex t ; 2” ,
” contents ” : [
{

”@id” : ”dtmi : dt : dolap : os :O1 ; 1” ,
”@type” : ” Property ” ,
”name” : ” os ” ,
” d e s c r i p t i o n ” : ”Ubuntu 22 . 04 . 1 LTS”

} ,
{

”@id” : ”dtmi : dt : dolap : system : te lemetry 41373 ; 1” ,
”@type” : ”SWTelemetry” ,
”name” : ” metr ic 0” ,
”displayName” : ” value ” ,
”SamplerName” : ” kernel . a l l . load ” ,
”DBName” : ” k e r n e l a l l l o a d ”

}
]

} ,
”dtmi : dt : dolap : socket 0 ; 1” : {

”@type” : ” I n t e r f a c e ” ,
”@id” : ”dtmi : dt : dolap : socket 0 ; 1” ,
” @context ” : ”dtmi : dtdl : contex t ; 2” ,
” contents ” : [
{

”@id” : ”dtmi : dt : dolap : socket 0 : property 0 ; 1” ,
”@type” : ” Property ” ,
”name” : ”model” ,
” d e s c r i p t i o n ” : ” I n t e l (R) Xeon (R) Gold 6152 CPU @ 2 . 10GHz”

} ,
{

”@id” : ”dtmi : dt : dolap : socket 0 : t e lemetry 41431 ; 1” ,
”@type” : ”SWTelemetry” ,
”name” : ” metr ic 11” ,
”displayName” : ” node0” ,
”SamplerName” : ” kernel . pernode . cpu . i r q . s o f t ” ,
”DBName” : ” k e r n e l p e r n o d e c p u i r q s o f t ”

}
]

} ,
”dtmi : dt : dolap : thread 0 ; 1” : {

”@type” : ” I n t e r f a c e ” ,
”@id” : ”dtmi : dt : dolap : thread 0 ; 1” ,
” @context ” : ”dtmi : dtdl : contex t ; 2” ,
” contents ” : [
{

”@id” : ”dtmi : dt : dolap : thread 0 : t e lemetry 44038 ; 1” ,
”@type” : ”SWTelemetry” ,
”name” : ” metr ic 0” ,
”displayName” : ” cpu 0” ,
”SamplerName” : ” kernel . percpu . i n t e r r u p t s ” ,
”DBName” : ” k e r n e l p e r c p u i n t e r r u p t s ”

} ,
{

”@id” : ”dtmi : dt : dolap : thread 0 : t e lemetry 44184 ; 1” ,
”@type” : ”HWTelemetry” ,
”name” : ” metr ic 146” ,
”displayName” : ” cpu 0” ,
”SamplerName” : ” perfevent . hwcounters . L1D PEND MISS EDGE” ,
”DBName” : ” perfevent hwcounters L 1D PEND MISS EDGE value” ,
”PMUName” : ”L1D PEND MISS :EDGE”

}
]

}
}

}

A small subset of SuperTwin Description can be found in Listing 1. The ”@id” fields that are
tagged with numbers in parentheses are entries that are used in different visualization scenarios
for their corresponding owner components. From those entries; those designated with the tag
(1) are used to generate info cards which display their description. Tags tagged with (2) are
used to generate timeseries or stat panels. Note that their ”displayName” fields changing w.r.to
their owner component. This field is used to both select a specific component from many from
database and display their name is panels. Entry tagged with (3) is a PMU event. This event have
an additional PMUName field which is used to configure perfevent sampler before sampling take
place.

SparCity 7

2.2 profiling capabilities

As previously mentioned in our deliverables, we selected Performance Co-Pilot (PCP) for teleme-
try collection, a software developed by Red Hat and widely utilized by prominent organizations
such as IBM, Netflix, and CERN.

PCP adopts a modular structure that incorporates various Performance Metrics Domain
Agents (PMDAs) to gather metrics from different sources. These metrics encompass system-
level measurements that contribute to modeling system performance and diagnosing anomalies.
They originate from various components within a system, including the kernel, memory, disks,
networks, and similar entities. Although system metrics do not directly pinpoint the causes of
application performance issues, they provide insights into the system’s state during execution and
can uncover system-related anomalies such as resource contention, thermal throttling, memory
leaks, or suboptimal affinity. Consequently, these metrics need to be continuously collected at
a relatively low frequency. Additionally, there are hardware performance events reported by
Performance Monitoring Units (PMUs), which directly impact application performance. These
events include cache misses, floating-point operations, branch misses, executed instructions, and
more. Collecting these metrics requires a higher frequency, particularly during kernel execution.

PCP’s PMDAs operate on a pull-only basis, which means they report metrics only when
requested by a sampler. SuperTwin leverages this characteristic of PMDAs. Monitor samplers
are configured and launched to remain active at all times after the installation of SuperTwin.
Conversely, observation samplers are configured and launched just prior to the execution of a
task, solely collecting metrics during that specific execution period. Since SuperTwin encodes
all the necessary parameters for the environment and every potential metric that the system can
report within its SuperTwin Description, it has the capability to configure and launch an arbitrary
number of samplers upon request via the SuperTwin API.

The distinction between monitor and sampler is not strict. For example we prefer to put
RAPL energy metrics together with monitor metrics. Moreover, when PMU metrics monitored
constantly, they can be used to generate real time performance models. To this end, we put
component metrics for CARM under constant sampling and was able to observe Arithmetic
Intensity and Bandwith of each core in real-time, within SuperTwin dashboards.

2.2.1 observation interface

To be able to recall the collected data and generate visualizations for a specific execution, or a
specific interval of time, an ObservationInterface is generated and appended into SuperTwin.
This ObservationInterface acts as a formula to generate necessary queries. During observations,
collected telemetry is inserted into the database with their corresponding observation id as their
tag, therefore could be queried easily using this tag. To query monitor metrics that collected from
the system during the execution, first and last timestamp from a observation is used.

SparCity 8

Listing 2: An example ObservationInterface entry
{
”@type” : ” O b s e r v a t i o n I n t e r f a c e ” ,
”@id” : ”278e26 c 2−3 fd 3−45e4−862b−5646dc9e7aa0” ,
”displayName” : ”rcm rma10 mt” ,
” time ” : 48 . 667 ,
”command” : ” ./spmv − f rma 10 . mtx −rcm − t 4” ,
” modif ier ” : ” likwid −pin −q − c So : 0−1@S1 : 0−1” ,
” no threads ” : 4 ,
” involved threads ” : [0 , 1 , 22 , 23] ,
” sampled sw metrics ” : [
” kernel . percpu . cpu . i d l e ” ,
”mem. numa . a l l o c . h i t ” ,
”mem. numa . a l l o c . miss ”
] ,
” sampled hw metrics ” : [
”RAPL ENERGY PKG” ,
”INSTRUCTION RETIRED” ,
”FP ARITH : SCALAR DOUBLE” ,
”MEM LOAD RETIRED: L1 HIT”
] ,
”dashboard” : ” ht tp : // l o c a l h o s t : 3000/d/KG3V5WEVz/pmus−1b39 c f 64−5551−49 f 9−a92c−777872 ? time=1681500242500&time . window=21000$ ”
}

Listing 3: Example queries that is generated using ObservationInterface in Listing 2

SELECT ” cpu0 ” , ” cpu1 ” , ” cpu22 ” , ” cpu23 ” FROM ” k e r ne l p e r cp u c p u i d l e ” WHERE tag=”
↪→ 278 e26c2 −3 fd3 −45e4 −862b−5646 dc9e7aa0 ” AND time >= 1687649768499ms and time <=
↪→ 1687650049919ms

SELECT ” node0” , ” node1” FROM ” mem numa alloc hit ” WHERE tag=”278 e26c2 −3 fd3 −45e4 −862b
↪→ −5646 dc9e7aa0 ” AND time >= 1687649768499ms and time <= 1687650049919ms

SELECT ” cpu0 ” , ” cpu1 ” , ” cpu22 ” , ” cpu23 ” FROM ”
↪→ p e r f e v e n t h w c o u n t e r s f p a r i t h s c a l a r d o u b l e ” WHERE tag=” 278 e26c2 −3 fd3 −45e4 −862b
↪→ −5646 dc9e7aa0 ”

SELECT ” node0” , ” node1” FROM ”perfevent hwcounters RAPL ENERGY PKG”WHERE tag=”278

↪→ e26c2 −3 fd3 −45e4 −862b−5646 dc9e7aa0 ”

2.3 modelling capabilities

Our primary focus for benchmarks and performance modeling is CARM (Cache Aware Roofline
Model), while STREAM and HPCG benchmarks are also included to showcase the versatility of
our proposed approach, as they are widely used for simulating HPC workloads. The integration
of benchmarks into SuperTwin is achieved by incorporating their source code along with the
SuperTwin framework. However, these source codes are not simply scripted; they are managed
as modules within SuperTwin. During the probing phase, the source codes are copied to the
target machine and compiled there, optimizing them for maximum vector size, available compiler
(GCC vs. Intel), or architecture-specific features. Subsequently, a script is generated that consists
of a predefined set of threads and possible placements, which is then executed on the target
host. By default, this script generates a set of threads ranging from 1 to the number of threads
as powers of 2, placed either on a single NUMA node or distributed evenly across NUMA nodes.
Additionally, threads per core are pinned to specific cores, and threads per socket are pinned
to particular sockets. The results obtained from these benchmarks are parsed and encoded into
the SuperTwin Description using a BenchmarkInterface. The BenchmarkInterface is essentially
an extension of the ObservationInterface, enriched with metadata relevant to benchmarks. These
benchmark results can be accessed at any time for the purpose of reconstructing performance
models and evaluating executed applications.

SparCity 9

Figure 2 An example BenchmarkInterface that encodes instances of CARM benchmark with different settings.

SparCity 10

Figure 3 Execution steps and involved modules of SuperTwin to generate a performance model in SuperTwin
dashboard

In addition, monitoring capabilities are provided for benchmarks, allowing for performance
event comparisons and performance analysis across different machines. This functionality enables
the generation of metrics such as GFlops per watt for various thread pinning or NUMA placement
configurations on-the-fly.

2.4 visualization framework

2.4.1 grafana

Grafana is an open-source visualization tool that provides dynamic dashboards, ad-hoc queries,
and alerting functions on time-series data. Since it’s initial release, it quickly become the industry

SparCity 11

standard and reached 10M+ global users. Due to its massive user-base, Grafana supports every
popular database and provides a wide variety of visualization methods. Grafana dashboards
are serialized JSON files that could be templated, uploaded, and altered via web API. Since
the dashboards are actually only JSON files, they are very easy to manipulate and generate for
numerous metrics, and also easy to interact with SuperTwin Description (STD).

2.4.2 generating grafana panels using supertwin

Grafana dashboards being serialized JSON objects is extensively utilized in SuperTwin. Since
all the necessary parameters for query generation are already encoded in STD the process of
generating a dashboard panel is simply becomes transitioning from an arbitrary STD interface to
a Grafana object. There are many different panel types available with Grafana. From those; stat,
timeseries and gauge panels are tailored for their explanatory and visual aspects, then matched
with types of metrics that is collected and used in SuperTwin dashboards. On top of native
Grafana panels, Plotly charts also could be displayed within Grafana dashboards. In SuperTwin,
system features and benchmark results, or any static data is visualized using Plotly graph object
notation, which is also described in JSON, therefore transition of data and functions are very
similar to generating Grafana panels. Categorical values, such as benchmark results are converted
into Plotly traces and used in panels that provide interactive selection and visualization alongside
native Grafana panels. Informative values, such as system features, or change in time w.r. to
other executions are visualized using plotly indicators.

Dashboards can be dynamically generated for each interface and it’s contents that includes
performance metrics or static information. This flexibility allows for the creation of dashboards
on-the-fly, incorporating the specific metrics and configurations relevant to each component.
Moreover, employing ObservationInterface and linked-data paradigm; dashboards for specific
observations and cross-comparisons between different runs on the same machine or different
machines could be generated.

Listing 4: JSON for simple Grafana panel - From target fields datasource, uid, measurement and
params are stored in STD and used to generate panel.
{
” id ” : 1

” panels ” :
[{” id ” : 1 ,

” t a r g e t s ” :
[{” datasource ” :
{” type ” : ” inf luxdb ” ,

”uid” : ”UUkm1881”} ,
”measurement” : ” perfevent hwcounters FP ARITH
SCALAR SINGLE value” ,
”params” : ” cpu 0”}]}]

” time ” :
{”from” : ”now−5m” ,

” to ” : ”now”}
}

SparCity 12

Figure 4 Grafana panel generated when JSON from Listing 4 is serialized. SuperTwin dashboards are
generated as collections of these panels, together with on-the-fly analysis panels.

SparCity 13

Grafana Panel Perf configuration

Twin Description

Figure 5 Usage of SuperTwin Description for metric collection and visualization purposes. Using the encoded
parameters, perfevent collection agent is configured, then a panel for the metric and it’s queries are generated.

SparCity 14

Figure 6 A roofline dashboard with combined results of CARM, STREAM, HPCG and system specifications.
As mentioned, benchmark results are stored as BenchmarkInterface in the twin description. Note that, because
the metrics required to calculate Arithmetic Intensity of an execution is collected during the execution of
benchmarks, STREAM and HPCG benchmarks are marked on the roofline. Storing benchmark results in STD
allows re-generation of the roofline model and mark the executed application if required metrics are collected.
Instability in STREAM and HPCG benchmark’s results are due to incomplete NUMA placement module.

Figure 7 Roofline dashboard model generated with plotly is interactive and allows selecting data. In this
figure, peak performance of L2 caches with different multi-threading settings is selected.

SparCity 15

Figure 8 When benchmark results are stored via BenchmarkInterface, environment modifiers or NUMA
placement is saved alongside results. When these results are visualized, recorded environment settings are also
presented.

Figure 9 A live monitoring dashboard that is tailored for machines that have multiple NUMA domains.
As mentioned, metrics are paired with panels that match their value type and meaning best. Since topology
information is also captured by STD, rows in thread load and thread frequency panels are sorted w.r.to shared
cores automatically. This way, events that effect topologically close threads could be observed more clearly.
For example, in this dashboard a load is placed in threads 0, 1, 2, 3, 4, 5, however frequency is also increased in
threads that share core with this threads. Since the JSON object that translate into this dashboard is mutable,
new metrics with desired panel type could be appended by user at any time.

SparCity 16

Figure 10 A component dashboard that is generated for L1D cache on thread54. As mentioned, Interfaces
that make STD could be isolated from each other and could be used to generate exclusive dashboards for the
component. Dashboards for network, disks, sockets, cores, threads, L1, L2, L3 caches are generated automatically
via filtering the metrics that the system report at the time. When the metrics collected from the system change,
panels on these dashboards are also automatically changed. Specifications panel on this dashboard is generated
with embedding Plotly indicators that shows static information that is encoded in STD. Also note that visualized
metrics on this dashboard are PMU metrics that are normally collected when an execution takes place. However,
they are set to be monitored constantly therefore provide a live view on the component.

Figure 11 A comparison dashboard generated using four ObservationInterface that belong to the same system.
In this figure, same SpMV kernel that use different orderings are compared. Collected metrics are originally
from different times but their timestamps are synchronized in order to be able to observe program phases. This
method will further developed with the addition of annotations that highlight program phases.

SparCity 17

Figure 12 A comparison dashboard generated using four ObservationInterface that belong to different systems.
Since the ObservationInterface reported from different systems are homogeneous in syntax, they could compared
instantly if they include same metrics. For this figure, all four systems are on the same network but the same
comparison is possible for the systems that are in different networks even if their STDs are stored in different
computers.

SparCity 18

Figure 13 Under development live Arithmetic Intensity dashboard. Since PCP can collect PMU metrics in
real time, SuperTwin can visualize them to generate live dashboards and live performance models. In this figure,
Arithmetic Intensity that is normalized w.r.to executed instructions vector size and memory throughput is
presented. Equations to calculate arithmetic intensity and memory throughput are also automatically generated
by SuperTwin and added to Grafana panels. This method will be further developed to provide real time
performance models.

SparCity 19

2.5 supertwin web application

Apart from Python API and command line interface, SuperTwin also implements a web appli-
cation for a user-friendly usage. In the same manner as other SuperTwin functionalities, web
application only requires STD of a target machine to operate. Web application provides configura-
tion and launch functionalities for samplers and filtering for metrics to collect. This is useful since
the number of metrics that could be collected from a target system is in the order of thousands,
and encoded in STD which is hard to read for humans. Moreover, executions for a target system
could be launched from web application with filtered and selected metrics with selected affinity.
Web application also provides access to monitor and generated comparison dashboards, therefore
effectively reduces the required number of applications/frameworks to use simultaneously to be
able to use SuperTwin effectively to one.

Figure 14 Login page of SuperTwin web application. When user log in with their account on the target
system probing phase starts, STD and monitoring dashboard for target system is generated for the target system.
Benchmarks are disabled by default due to their time requirements but could be set to launch automatically
if user wants to generate roofline dashboards. After the first login, generated STD is retrieved for the target
machine and SuperTwin functionalities are simply provided to user without any other operation.

SparCity 20

Figure 15 Metric selection page of web application. In this page, suggested metrics could be chosen as a
chunk, or user can view and add any of the metrics that the target system can report. When a metric is added
from this page, it’s automatically appended to the target system’s monitoring dashboard.

Figure 16 Perform experiment page of the web interface. From this page, executions on target system could
be launched with selected path, application and affinity. PMU metrics to be collected from the target system
during the execution could also be filtered and selected from this page. A script is then generated and executed
automatically for the each line written to commands box. A dashboard that includes comparison of the given
commands, similar to Figure 11 is then generated.

SparCity 21

Figure 17 Monitoring, performance model, observation and other generated dashboards for the target system
could be accessed at any time from dashboards page. Status of metric collection could also be viewed and dead
samplers (if any) could be recovered from this page.

2.6 contributions by each partner

INESC-ID provided the cache-aware roofline model to blend into SuperTwin and worked with SU
on the implementation of benchmarks within SuperTwin. SU and KU have worked in SparseBase
together. KU also provided ReuseTracker and ComDetective.

2.7 deviations (if any)
Except for Task 4.6, we are progressing according to the plan. We have already started Task
4.6, designed a performance database, but paused its implementation since the structure heavily
depends on the outputs of the other tasks. We will focus on the implementation part in the
remaining project period.

SparCity 22

references

Chen, Xiaoli. “CERN Analysis Preservation: A Novel Digital Library Service to Enable Reusable
and Reproducible Research”. Research and Advanced Technology for Digital Libraries. Springer
International Publishing, 2016, pp. 347–356.

Friedemann. “Linked Data Architecture for Assistance and Traceability in Smart Manufacturing”.
MATEC Web of Conferences 304 (2019), p. 04006. doi: 10.1051/matecconf/201930404006.

Janowicz. “SOSA: A lightweight ontology for sensors, observations, samples, and actuators”.
Journal of Web Semantics 56 (2019), pp. 1–10. issn: 1570-8268. doi: https://doi.org/10.
1016/j.websem.2018.06.003. url: https://www.sciencedirect.com/science/article/
pii/S1570826818300295.

Xin. “Cross-linking BioThings APIs through JSON-LD to facilitate knowledge exploration”. BMC
Bioinformatics 19 (2018). doi: 10.1186/s12859-018-2041-5.

SparCity 23

https://doi.org/10.1051/matecconf/201930404006
https://doi.org/https://doi.org/10.1016/j.websem.2018.06.003
https://doi.org/https://doi.org/10.1016/j.websem.2018.06.003
https://www.sciencedirect.com/science/article/pii/S1570826818300295
https://www.sciencedirect.com/science/article/pii/S1570826818300295
https://doi.org/10.1186/s12859-018-2041-5

3 history of changes

Version Author(s) Date Comment
0.1 Fatih Taşyaran 25.06.2023 First draft
0.2 Kamer Kaya 30.06.2023 Modifications
0.2.1 Didem Unat 30.06.2023 Final version

Table 2 Document History of Changes

SparCity 24

	Introduction
	Objectives of this Deliverable
	Deviations and Counter Measures
	Resources

	SparCity Visualization Tools
	Visualization Structures on the Backend
	Profiling Capabilities
	Observation Interface

	Modelling Capabilities
	Visualization Framework
	Grafana
	Generating Grafana Panels using SuperTwin

	SuperTwin Web Application
	Contributions by Each Partner
	Deviations (if Any)

	History of Changes

