
Efficiency Database and Design Guide

Deliverable No: D4.4
Deliverable Title: Efficiency Database and Design Guide
Deliverable Publish Date: 13 October 2023

Project Title: SparCity: An Optimization and Co-design Framework for
Sparse Computation

Call ID: H2020-JTI-EuroHPC-2019-1
Project No: 956213

Project Duration: 36 months
Project Start Date: 1 April 2021

Contact: sparcity-project-group@ku.edu.tr

List of partners:

Participant no. Participant organisation name Short name Country
1 (Coordinator) Koç University KU Turkey
2 Sabancı University SU Turkey
3 Simula Research Laboratory AS Simula Norway
4 Instituto de Engenharia de Sistemas e Computadores, INESC-ID Portugal

Investigação e Desenvolvimento em Lisboa
5 Ludwig-Maximilians-Universität München LMU Germany
6 Graphcore AS* Graphcore Norway

*until M21

i

Ref. Ares(2023)6975877 - 13/10/2023

contents

1 Introduction 1

1.1 Objectives of this Deliverable 1

1.2 Deviations and Counter Measures 1

1.3 Resources 1

2 Review of SuperTwin and Recent Changes 3

3 Design Towards Performance Database 7

3.1 BenchmarkInterface 7

3.2 ObservationInterface 8

3.3 Abstraction Layer 9

4 Performance Database 10

4.1 Contributions by Each Partner 12

4.2 Deviations (if Any) 12

4.3 History of Changes 14

ii

1 introduction

The SparCity project is funded by EuroHPC JU (the European High Performance Computing
Joint Undertaking) under the 2019 call of Extreme-Scale Computing and Data-Driven Technologies
for research and innovation actions. SparCity aims to create a supercomputing framework
that will provide efficient algorithms and coherent tools specifically designed for maximizing
the performance and energy efficiency of sparse computations on emerging High-Performance
Computing (HPC) systems, while also opening up new usage areas for sparse computations in
data analytics and deep learning.

Sparse computations are commonly found at the heart of many important applications, but
at the same time, it is challenging to achieve high performance when performing sparse compu-
tations. SparCity delivers a coherent collection of innovative algorithms and tools for enabling
high efficiency of sparse computations on emerging hardware platforms. More specifically, the
objectives of the project are:

• to develop a comprehensive application and data characterization mechanism for sparse
computation based on the state-of-the-art analytical and machine-learning-based perfor-
mance and energy models,

• to develop advanced node-level static and dynamic code optimizations designed for mas-
sive and heterogeneous parallel architectures with complex memory hierarchy for sparse
computation,

• to devise topology-aware partitioning algorithms and communication optimizations to boost
the efficiency of system-level parallelism,

• to create digital SuperTwins of supercomputers to evaluate and simulate what-if hardware
scenarios,

• to demonstrate the effectiveness and usability of the SparCity framework by enhancing
the computing scale and energy efficiency of challenging real-life applications.

• to deliver a robust, well-supported and documented SparCity framework into the hands
of computational scientists, data analysts, and deep learning end-users from industry and
academia.

1.1 objectives of this deliverable

The objective of this deliverable is to provide a technical overview of the research activities carried
out..

1.2 deviations and counter measures

1.3 resources

The following is the list of websites that host software and data repositories that have so far been
developed for the SparCity framework. It is expected that these websites will later receive a
more coherent organization.

• Deliverables that are public are available in the project website

http://sparcity.eu

SparCity 1

http://sparcity.eu

• Source code developed in this project is available at the project github repository

https://github.com/sparcityeu

• A repository of sparse problem instances

https://datasets.simula.no/sparcity

SparCity 2

https://github.com/sparcityeu
https://datasets.simula.no/sparcity

2 review of supertwin and recent changes

SuperTwin relies on a comprehensive Knowledge Base (KB, previously named SuperTwin
Description or STD in earlier deliverables) and linked-data capabilities. SuperTwin design is
refactored towards including a global SuPerfDB. In this deliverable, we will examine data struc-
tures and methods that allow the creation of a SuPerfDB that seamlessly keeps and interacts
with the performance data collected from different hosts at different times and settings. Super-
Twin is implemented using the parameter-object design pattern; the Knowledge Base is used by
each SuperTwin function as a parameter, including all SuPerfDB functionalities. It is dynamic,
evolving over time to capture and link additional telemetry and metadata as they become avail-
able. Moreover, the KB has modular classes that encapsulate the collected information from a
time window. This allows the twin to continue its operations in a live fashion without procedural
changes and comprehend the factors influencing system performance in real-time. An example
KB is shown in Fig. 1.

SuperTwin’s distinguishing capabilities lie in its ability to manage and utilize an extensive
array of performance metrics, ensuring robust monitoring and analysis of system behaviour.

@id:dtmi:dt:compute0:socket0;1
@type: Interface

@id:dtmi:dt:compute0:socket1;1
@type: Interface

dtmi:dt:compute1:system;1
@type: Interface

@id:dtmi:dt:cluster0;1

dtmi:dt:compute0:system;1
@type: Interface

@id:"dtmi:dt:fedora:cache54:telemetry1997;1"
@type: HWTelemetry
contents: [
name:"metric101",
PMUName:"CYCLE_ACTIVITY:STALLS_L2_MISS",
SamplerName: "perfevent.hwcounters.CYCLE_ACTIVITY_STALLS_L2_MISS",
DBName:"perfevent_hwcounters_CYCLE_ACTIVITY_STALLS_L2_MISS_value",
FieldName: "_cpu54"]

@id:dtmi:dt:compute0:core19;1
@type: Interface

@id:dtmi:dt:compute0:thread38;1
@type: Interface

@id:dtmi:dt:compute0:thread39;1
@type: Interface

@id:dtmi:dt:compute0:observation22:;1
@type: ObservationInterface

@id:dtmi:dt:compute0:benchmark3:;1
@type: BenchmarkInterface

@id:dtmi:dt:compute0:core20;1
@type: Interface

@id:dtmi:dt:compute0:L1D:cache54;1
@type: Interface

Cluster
Level

System
Level

Socket
Level

Core
Level

Thread
Level

Cache
Level

perf

Figure 1 Knowledge Base of SuperTwin.

Capturing the target system and its component hierarchy, the KB can be parsed to acquire any
information from topology to database parameters. There are two types of metrics to be sampled
from an HPC system. The first type is SWTelemetry, i.e., software and system state-related metrics
such as the number of processes, CPU, and memory load. A pre-selected set of these metrics
is set to be always sampled with a low frequency, however, they are completely configurable and
can be reconfigured by the user at any time. The second type is HWTelemetry, sampled from
PMUs during kernel executions with high frequency. Sampling different metrics with varying
frequencies yields a need for metadata associated with the host system’s metadata. While time-
series databases are tailored for telemetry data, they cannot keep much (linked) metadata. On
the contrary, managing time-series data via a document database is impractical.1 For this reason,
SuperTwin’s KB uses two types of databases with links between them. To this end, while
InfluxDB stores the sampled SWTelemetry and HWTelemetry, MongoDB stores the knowledge

1Friedemann. “Linked Data Architecture for Assistance and Traceability in Smart Manufacturing”. MATEC Web of
Conferences 304 (2019), p. 04006. doi: 10.1051/matecconf/201930404006; Katarina Milenković. “Enabling Knowledge
Management in Complex Industrial Processes Using Semantic Web Technology”. English. Proceedings of the 2019
International Conference on Theory and Applications in the Knowledge Economy. 2019 International Conference on Theory
and Applications in the Knowledge Economy, TAKE 2019 ; Conference date: 03-07-2019 Through 05-01-2020. 2019.
url: https://www.take-conference2019.com/.

SparCity 3

https://doi.org/10.1051/matecconf/201930404006
https://www.take-conference2019.com/

base as JSON-LD extended with entries for each computation. To associate the computations with
telemetry, pointers to InfluxDB are used to recall corresponding metrics.

We consider the KB with a tree-structured organization and doing this enables fully automated
performance monitoring, anomaly detection and dashboards with meticulously selected metrics,
tailoring various views. These views, namely (a) Focus View, (b) Level View, and (c) Subtree View,
allow for a dynamic and versatile performance data exploration. Multiple views enable fine- and
coarse-grain investigations into the component and system performance. Overall, SuperTwin

can visualize data from different components and systems in tandem allowing for comprehensive
analysis and comparison, further enriched by the inclusion of various views using Grafana
visualization tool.

(a) Focus view for an individual cache. Will be supported by SuPerfDB

(b) Level view for processes Sup-
ported by SuPerfDB

(c) Level view for procs/sockets Sup-
ported by SuPerfDB

(d) Subtree view for a node. Not supported by SuPerfDB

Figure 2 Sample dashboards, automatically generated by SuperTwin.

SparCity 4

• The focus (i.e., component) view offers a dashboard that visualizes active metrics from a single
component, e.g., a socket, core, thread, network, disk, or process, providing a focused lens on
individual element performance. This view can be extended to focus on the path from the root
(whole system) to the focused component to investigate the root cause of anomalous behaviors
or performance drawbacks. That is the path navigating from a component perspective to a
more generalized system perspective is analyzed, aiding in tracing and isolating performance
issues. An example focus-view dashboard is given in Fig. 2(a) for an individual cache.

• The level (i.e., type) view generates a dashboard that visualizes multiple instances from the
same type, such as a group of threads, disks and even processes. This view allows the isolation
of a single type, which corresponds to a level in the KB tree, treating them individually or
in comparison to components within the same or a different system, whereas the linked-data
capabilities enable the automatic visualization of component performance across different
machines. For instance, the level-view dashboards for different processes running SpMV (each
with a different reordering of the same matrix) and on two sockets running the SpMV code
with two different orderings on the same matrix are given in Fig. 2(b) and Fig. 2(c), respectively.

• The subtree (i.e., (sub)system) view seeks to zoom into performance events, starting from an
arbitrary node and extending to all connected leaf nodes, moving from a general perspective
to a more specific one, i.e., from a single socket to all cores/caches. The detail intensifies as
the path moves from the root (subsystem) to the leaf (components at the bottom of the KB
hierarchy), facilitating a deeper dive into specific performance events and data. An example
subtree-view dashboard for a single server is given in Fig. 2(d).

KB Lifecycle: The knowledge base is not a static object. It captures more about the system it
represents as time passes by attaching new entries. To initialize the KB, SuperTwin uses its
probing tool. To comprehensively capture the structural details of a system, including component
specifications, inter/intra-relationships, and their associated performance metrics, a detailed prob-
ing is required. SuperTwin targets each hardware component that can be monitored, produce
metrics or affect the overall system performance. Furthermore, it captures their relationships
in a lightweight and adaptable fashion. SuperTwin’s probing relies on widely available Linux
tools to gather data. The system, network, and memory information are collected via lshw. The
CPU, memory/cache topology metadata are collected by parsing likwid-topology from likwid

tools2 and cpuid instruction. When available, disk info is probed from /sys/block/*/device

and SMART3 utility. PMU information is collected with libpfm4 library, which can recognize
model-specific registers and their events of virtually every x86 and ARM processor available on
the market. Upon probing available PMU metrics via libpfm4, and software telemetry via PCP,
are filtered and mapped with the components.

In the initial KB, every single component that performs computation, communication, or I/O
is represented with an Interface. Furthermore, each relationship among these components is
encoded into these interfaces with a Relationship. The available metrics for the components are
filtered and encoded as SWTelemetry and HWTelemetry. This makes precisely pinned executions
and automated queries possible.

2Thomas Röhl et al. “LIKWID Monitoring Stack: A Flexible Framework Enabling Job Specific Performance mon-
itoring for the masses”. 2017 IEEE International Conference on Cluster Computing (CLUSTER). 2017, pp. 781–784. doi:
10.1109/CLUSTER.2017.115.

3The Smartmontools Team. Smartmontools. Accessed on 5th October 2023. url: https://www.smartmontools.org/.

SparCity 5

https://doi.org/10.1109/CLUSTER.2017.115
https://www.smartmontools.org/

SuperTwin is designed to run on a host that can be different than the target system. The
host runs the SuperTwin daemon as well as the tools with heavy workloads, e.g., InfluxDB,
MongoDB, and Grafana. The target only runs the PCP samplers and reports telemetry to the host
when requested. In Figure 3, step 0 reads the environment variables such as the IP addresses
of InfluxDB and MongoDB instances and Grafana token to the SuperTwin daemon. In step
1 , the probing module is copied to the target system to generate a JSON file containing the
system information which, in 2 , is copied back to the host to generate the KB. The information
collected from all the tools, components, and third-party tools SuperTwin manages is fused
for KB generation. Once the KB is generated, it is inserted into MongoDB in step 3 . Step 3

re-occurs every time KB changes or SuperTwin is restarted. When this phase is completed, the
framework becomes fully functional using only this data structure.

SuperTwin

environment
variables

Probing

lshw
cpuid
likwid- topology
libpfm4

probing.json

Knowledge Base

Generate

generate
pcp2influxdb

MonitorSampler

generate grafana
panels

generate
pcp2influxdb

reconfigure
perfevent

generate
observation script

ObservationSampler

execute script ObservationInterface

generate grafana
panels

Scenario A

Scenario B

1
2

3
3

0

A1

A2

A3

B1

B2

B3

B4

B5 B6

B7

B8

Legend

Executed at host system

Executed at target system

Data transaction

compile source
code

generate
benchmark config

execute scriptgenerate
benchmark script

parse result

BenchmarkInterfaceSubstitutable

Scenario C

C1

C2

C3 C4 C6

C5 C7

C8

Figure 3 Three scenarios within the SuperTwin framework

In Figure 3, t SuperTwin scenarios are shown; the first is sampling software emitted metrics
to monitor system state (Scenario A), and the other is capturing the hardware performance events
during kernel execution. In step A1 , using KB, SuperTwin configures the PCP collectors and
samples system-related metrics, such as CPU and memory usage, NUMA-related events, and
energy spent. In A3 , a sampler on the target is requested for this telemetry. Since the query

parameters are already encoded in KB, steps A1 and A2 can happen at the same time. That is the
dashboards are already generated on the host when the target starts reporting.

In Scenario B, SuperTwin samples hardware events reported from the PMUs. In this case,
it focuses on an execution on the target and the components on which the execution takes
place. Therefore, SuperTwin requests an executable and its command-line parameters. Once
these are provided, the PMUs are configured to report the requested metrics in step B1 . That is,
SuperTwin configures the sampler in the same way as step A1 . After the PMUs are configured, it
generates a script to run the requested kernel on the target system. This script bounds the threads

SparCity 6

to the cores using one of the balanced, compact, numa balanced, numa compact strategies based on
the probed target system topology. Then it samples performance events, executes the script to run
a kernel on a target and stops the sampling as the kernel is halted. An ObservationInterface

is generated to encode the execution metadata, collected metrics and the unique observation
ID associated with the time-series data in InfluxDB. In step B8 , the ObservationInterface

is appended to the system’s KB. This ObservationInterface entry is later used to recall the
performance data for visualization or analysis purposes. For example, using the generated KB
and run configuration module, an execution that will run on 4 threads on each socket that does
not share an L1 cache could be launched; similarly, after the execution of a run, performance
metrics from threads that share same L2 cache with a given thread could be queried.

In Scenario C, SuperTwin automatically executes a selected benchmark with selected param-
eters at the target system. Using the system info that is encoded within KB, SuperTwin first
copies the source code of a selected benchmark to the target system at step C1 . Then, based on
the information in KB, SuperTwin first compiles the benchmarks on the target system using the
benchmark’s preferred compiler if it exists, e.g., icc or gcc. At step C2 , the configuration files the
benchmark requires are generated by using the system information (cache sizes, CPU frequency)
or parameters (number of threads, problem size) set. At step C3 , a bash script to execute the
benchmark on the target system is generated. By default, the generated scripts cover a set of
threads ranging from 1 to the number of threads as powers of 2, placed either on a single NUMA
node or distributed evenly across NUMA nodes. Additionally, threads are pinned to specific
cores and particular sockets. At this point, the user can select to sample PMU and system teleme-
try as this script is an observation script. After the execution of the benchmark, SuperTwin

parses the results and creates a BenchmarkInterface with the corresponding BenchmarkResult

at step C7 . Then similar to step B8 the newly generated BenchmarkInterface is appended to
the KB. If optional performance event sampling is selected at step C5 , an ObservationInterface

in accordance with generated BenchmarkInterface is appended to the KB. The aim is to assist
architecture research by determining performance events affected by system specifications such
as cache architecture, topology and memory bandwidths.

3 design towards performance database

To keep the KB dynamic and continuously link the system components to performance data,
SuperTwin uses Interfaces and attaches their instances (i.e., entries) to KB. For instance, as
mentioned above, processes are monitored via per-process kernel metrics. JSON-LD interfaces
are serialized with given parameters into a run-time object.

3.1 benchmarkinterface

BenchmarkInterface, and BenchmarkResult as a helper class, are designed to record benchmark
results. SuperTwin is able to perform Cache Aware Roofline Model (CARM), STREAM4 and High
Performance Conjugate Gradient5 (HPCG) benchmarks homogeneously using the BenchmarkInterface.

BenchmarkInterface entries are designed to be able to access benchmark results in a struc-
tured manner. Being appended to the KB -along with an associated ObservationInterface-
provides the ability to analyze the relation between the benchmark results and the system speci-

4John McCalpin. “Memory bandwidth and machine balance in high performance computers”. IEEE Technical
Committee on Computer Architecture Newsletter (1995), pp. 19–25.

5Jack Dongarra and Michael A Heroux. “Toward a new metric for ranking high performance computing systems”.
Sandia Report, SAND2013-4744 312 (2013), p. 150.

SparCity 7

Figure 4 An example BenchmarkInterface entry encoding two different settings for CARM benchmark.
This entry is later used to generate performance models.

fication. Moreover, any modifier, such as pinning and NUMA placement or first touch policies,
are encoded together with the results. This design is implemented to enable smart placement of
executions to the target systems via machine learning models later.

1 {

2 "@type": "ObservationInterface",

3 "@id": "278e26c2 -3fd3 -45e4 -862b-5646 dc9e7aa0",

4 "displayName": "rcm_rma10_mt",

5 "time": 48.667,

6 "command": "./spmv -f rma10.mtx -o rcm -t 4",

7 "modifier": "likwid -pin -q -c S0:0-1@S1:0-1",

8 "no_threads": 4,

9 "involved_threads": [0,1,22,23],

10 "sampled_sw_metrics": ["kernel.percpu.cpu.idle", "mem.numa.alloc.hit", "mem.numa.alloc.

miss"],

11 "sampled_hw_metrics": ["RAPL_ENERGY_PKG", "INSTRUCTION_RETIRED", "FP_ARITH:SCALAR_DOUBLE",

"MEM_LOAD_RETIRED:L1_HIT"],

12 "dashboard": "http :// localhost :3000/d/-PiOFZEVz/pmus -278 e26c2 -3fd3 -45e4 -862b-5646 dc9e7aa0?

time =1681499308500& time.window =17000"

13 }

Listing 1: An example ObservationInterface entry which is used to retrieve sampled metrics. A report
is generated on the fly and added to the entry before appending to KB.

3.2 observationinterface

ObservationInterface entries encode sampled hardware performance events and system met-
rics, executed commands, generated affinity, time, and other relevant metadata. Using the en-
coded parameters in KB, queries can be generated to automatically retrieve data through these

SparCity 8

entries. A basic ObservationInterface entry is shown in Listing 1. The queries automatically
generated by SuperTwin to analyze the BenchmarkEntry in Listing 1 are given in Listing 2.

1 SELECT "_cpu0", "_cpu1", "_cpu22", "_cpu23" FROM "kernel_percpu_cpu_idle" WHERE tag="278

e26c2 -3fd3 -45e4 -862b-5646 dc9e7aa0"

2 SELECT "_node0", "_node1" FROM "mem_numa_alloc_hit" WHERE tag="278e26c2 -3fd3 -45e4 -862b -5646

dc9e7aa0"

3 SELECT "_cpu0", "_cpu1", "_cpu22", "_cpu23" FROM "

perfevent_hwcounters_fp_arith_scalar_double" WHERE tag="278e26c2 -3fd3 -45e4 -862b-5646

dc9e7aa0"

4 SELECT "_node0", "_node1" FROM "perfevent_hwcounters_RAPL_ENERGY_PKG" WHERE tag="278e26c2 -3

fd3 -45e4 -862b -5646 dc9e7aa0"

Listing 2: Queries automatically generated by SuperTwin for the ObservationInterface entry given in
Listing 1.

3.3 abstraction layer

To perform its actions and to effectively monitor PMU events on diverse target systems, each
hosting CPUs across various vendors and micro-architectures, SuperTwin leverages an Abstrac-
tion Layer. The monitoring units and their reported events can significantly vary among different
micro-architectures and from vendor to vendor. For instance, Intel has four general-purpose pro-
grammable counters/per-core to count performance events (eight if it is not shared with a second
thread in the core), whereas AMD has two internal counters, one for each sampling flag. Intel
provides 62 sub-events corresponding to 12 events, each accompanied by mask values. Similarly,
AMD offers support for events similar to Intel. As an example, similarities and differences of
events for Intel Cascade and AMD Zen3 are listed in Table 1. A detailed comparison between
Intel and AMD PMUs can be found in.6

Event Intel Cascade AMD Zen3

Energy
RAPL ENERGY PKG
RAPL ENERGY DRAM

RAPL ENERGY PKG
RAPL ENERGY DRAM

Retired Inst. INSTRUCTIONS RETIRED RETIRED INSTRUCTIONS

Tot. Mem. Op.
MEM INST RETIRED:ALL LOADS +
MEM INST RETIRED:ALL STORES

LS DISPATCH:STORE DISPATCH+
LS DISPATCH:LD DISPATCH

L3 Hit Not Supported LONGEST LAT CACHE:MISS +
LONGEST LAT CACHE:RETIRED

Table 1 Intel vs. AMD PMU events: the same, similar, different, and exclusive names for the same generic
event, respectively.

To facilitate the monitoring of PMU events in a platform-agnostic manner, an abstraction layer
is implemented for SuperTwin. This layer effectively maps generic event names to concealed
hardware-specific PMU event names, enhancing the system’s versatility and ease of use. We have
established a set of common events, such as L1 CACHE DATA MISS, FP DIV RETIRED, and
RAPL ENERGY PKG, that are assumed to be supported by all the commodity CPUs. The rest of the
events are left to the user’s discretion. For further flexibility and scalability, SuperTwin utilizes
configuration files to establish a straightforward mapping of common events to corresponding
hardware events. The structure of a configuration file is as follows:

6Muhammad Aditya Sasongko et al. “Precise Event Sampling on AMD Versus Intel: Quantitative and Qualitative
Comparison”. IEEE Transactions on Parallel and Distributed Systems 34.5 (2023), pp. 1594–1608. issn: 1558-2183. doi:
10.1109/TPDS.2023.3257105.

SparCity 9

https://doi.org/10.1109/TPDS.2023.3257105

[pmu_name | alias]

<generic_event>:<hardware_event_1> [op]

[op] : ((+|-|*|/)(<hw_event> | <const>)) [op]

Following the pattern delineated, it is possible to generate a configuration file for “any” hardware
by specifying the events intended for monitoring. Upon registering the desired configuration files
within SuperTwin, the application proceeds to configure the PCP of the target system using the
registered configuration files when needed. Additionally, users can access event information in a
CPU agnostic manner within the program using pmu util.get(...) method. As an example;

>pmu_utils.get(HW_PMU_NAME, COMMON_EVENT_NAME)

>pmu_utils.get("skl", "TOTAL_MEMORY_OPERATIONS")

>[

"MEM_INST_RETIRED:ALL_LOADS",

"+",

"MEM_INST_RETIRED:ALL_STORES"

]

Although this example belongs to a recent Intel CPU, SuperTwin’s configuration mapping
via its abstraction layer offers versatility. Users can create mapping files for a wide range of
CPUs, including Intel, AMD, PowerPC, ARM, and others, as long as they are supported by
the libpfm4 library which is the core library that enables PCP to monitor PMU events in CPUs.
As SuperTwin configures PCP on the target, it creates empty and zero-overhead dashboards
on Grafana, which are simply JSON files. Last, but not least, the abstraction layer seamlessly
generates the formulas for the events the user is interested in. This changes from vendor to
vendor as well as for every architecture even when the events are the same. An abstraction layer
is necessary in modern tools to handle this diversity for performance profiling.

4 performance database

For long-term data management, thanks to its modular design and presented data structures, Su-
perTwin operates a global performance database, SuPerfDB. Unlike local instances, SuPerfDB
employs cloud instances of MongoDB and InfluxDB. With a global performance database, Su-
perTwin aims to accumulate performance metrics from a wide array of systems to enhance
architectural research and train robust machine learning models, particularly leveraging Large
Language Models (LLMs), which can exploit the rich metadata collected to be trained as an
assistant for performance engineering. The users of SuperTwin have the option to report their
performance telemetry readings and the system’s knowledge base to the performance database,
alongside their local instances.

In SuPerfDB, the ObservationInterface of SuperTwin evolves into two versions within
the performance database context: TSObservationInterface and AGGObservationInterface,
where the latter statistically summarizes data using various aggregations, e.g., min, max, mean, to
manage high data volumes. The users require a local SuperTwin instance to access SuPerfDB,
visualize performance data, and automatically generate dashboards and reports. Without Super-
Twin, they can only download selected data for ML training. Future adaptations may include
appending source code and binary executables to the collected metadata, facilitating the training
of models that can optimize code and predict performance and potential inefficiencies.

SparCity 10

TSObservationInterface

TSObservationInterface

MongoDB Cloud InfluxDB Cloud
KB

AGGObservationInterface

BenchmarkInterface

AGGObservationInterface

AGGObservationInterface

TSObservationInterface

BenchmarkInterface

KB

KB

Measurements

Measurements

Measurements

Data
Link

SuperTwin Instance

.....

Dashboard Generation

Analysis

Training

Figure 5 Overview of SuPerfDB

Figure 6 Example usage of SuPerfDB web application: Knowledge bases and other classes are grouped
together. When entries are selected within the same panel, a Level view dashboard is generated. A comparison of
mutual HWTelemetry and SWTelemetry is shown in the dashboard, for the HWTelemetry, the abstraction layer
for the comparison of equivalent metrics is leveraged. Tailored visualizations for BenchmarkInterface entries
and Focus view from different hosts are currently under development.

SparCity 11

4.1 contributions by each partner

SU, KU, and INEC contributed to the design of the performance database. The detailed design is
a product of equal contributions by three partners. SU implemented the main components of the
database.

4.2 deviations (if any)
There are no deviations.

SparCity 12

references

Dongarra, Jack and Michael A Heroux. “Toward a new metric for ranking high performance
computing systems”. Sandia Report, SAND2013-4744 312 (2013), p. 150.

Friedemann. “Linked Data Architecture for Assistance and Traceability in Smart Manufacturing”.
MATEC Web of Conferences 304 (2019), p. 04006. doi: 10.1051/matecconf/201930404006.

McCalpin, John. “Memory bandwidth and machine balance in high performance computers”.
IEEE Technical Committee on Computer Architecture Newsletter (1995), pp. 19–25.

Milenković, Katarina. “Enabling Knowledge Management in Complex Industrial Processes Using
Semantic Web Technology”. English. Proceedings of the 2019 International Conference on The-
ory and Applications in the Knowledge Economy. 2019 International Conference on Theory and
Applications in the Knowledge Economy, TAKE 2019 ; Conference date: 03-07-2019 Through
05-01-2020. 2019. url: https://www.take-conference2019.com/.

Röhl, Thomas et al. “LIKWID Monitoring Stack: A Flexible Framework Enabling Job Specific Per-
formance monitoring for the masses”. 2017 IEEE International Conference on Cluster Computing
(CLUSTER). 2017, pp. 781–784. doi: 10.1109/CLUSTER.2017.115.

Sasongko, Muhammad Aditya et al. “Precise Event Sampling on AMD Versus Intel: Quantitative
and Qualitative Comparison”. IEEE Transactions on Parallel and Distributed Systems 34.5 (2023),
pp. 1594–1608. issn: 1558-2183. doi: 10.1109/TPDS.2023.3257105.

Team, The Smartmontools. Smartmontools. Accessed on 5th October 2023. url: https://www.
smartmontools.org/.

SparCity 13

https://doi.org/10.1051/matecconf/201930404006
https://www.take-conference2019.com/
https://doi.org/10.1109/CLUSTER.2017.115
https://doi.org/10.1109/TPDS.2023.3257105
https://www.smartmontools.org/
https://www.smartmontools.org/

4.3 history of changes

Version Author(s) Date Comment
0.1 Fatih Taşyaran 10.10.2023 First draft
0.2 Kamer Kaya 13.10.2023 Final version

Table 2 Document History of Changes

SparCity 14

	Introduction
	Objectives of this Deliverable
	Deviations and Counter Measures
	Resources

	Review of SuperTwin and Recent Changes
	Design Towards Performance Database
	BenchmarkInterface
	ObservationInterface
	Abstraction Layer

	Performance Database
	Contributions by Each Partner
	Deviations (if Any)
	History of Changes

