
Topology-aware Heterogeneous Multi-level Partitioner

Deliverable No: D3.4
Deliverable Title: Topology-aware Heterogeneous Multi-level Partitioner
Deliverable Publish Date: 31 March 2024

Project Title: SparCity: An Optimization and Co-design Framework for
Sparse Computation

Call ID: H2020-JTI-EuroHPC-2019-1
Project No: 956213

Project Duration: 36 months
Project Start Date: 1 April 2021

Contact: sparcity-project-group@ku.edu.tr

List of partners:

Participant no. Participant organisation name Short name Country
1 (Coordinator) Koç University KU Turkey
2 Sabancı University SU Turkey
3 Simula Research Laboratory AS Simula Norway
4 Instituto de Engenharia de Sistemas e Computadores, INESC-ID Portugal

Investigação e Desenvolvimento em Lisboa
5 Ludwig-Maximilians-Universität München LMU Germany
6 Graphcore AS* Graphcore Norway

*until M21

i



contents

1 Introduction 1

1.1 Objectives of this Deliverable 1

1.2 Work Performed 1

2 Fast Partitioning on Modern Architectures 2

2.1 Contributions by Each Partner 2

2.2 Deviations (if Any) 2

3 Distributed SpMV on Graphcore IPUs 2

3.1 Partitioning for sparse computations 2

3.2 Distributed sparse matrix-vector multiplication 3

3.2.1 Partitioning the matrix rows 3

3.2.2 Distributing the input vector 4

3.2.3 Parallel overhead 4

3.3 Numerical experiments 5

3.3.1 Example of partitioning and irregular communication 5

3.3.2 Partitioning for Graphcore GC200 IPUs 6

4 Using Graph Embedding for Graph Partitioning 9

4.1 History of Changes 13

ii



1 introduction

The SparCity project is funded by EuroHPC JU (the European High Performance Computing
Joint Undertaking) under the 2019 call for Extreme-Scale Computing and Data-Driven Technolo-
gies for research and innovation actions. SparCity aims to create a supercomputing framework
that will provide efficient algorithms and coherent tools specifically designed for maximizing
the performance and energy efficiency of sparse computations on emerging High-Performance
Computing (HPC) systems, while also opening up new usage areas for sparse computations in
data analytics and deep learning.

Sparse computations are commonly found at the heart of many important applications, but
at the same time, it is challenging to achieve high performance when performing sparse compu-
tations. SparCity delivers a coherent collection of innovative algorithms and tools for enabling
high efficiency of sparse computations on emerging hardware platforms. More specifically, the
objectives of the project are:

• to develop a comprehensive application and data characterization mechanism for sparse
computation based on state-of-the-art analytical and machine-learning-based performance
and energy models,

• to develop advanced node-level static and dynamic code optimizations designed for mas-
sive and heterogeneous parallel architectures with complex memory hierarchy for sparse
computation,

• to devise topology-aware partitioning algorithms and communication optimizations to boost
the efficiency of system-level parallelism,

• to create digital SuperTwins of supercomputers to evaluate and simulate what-if hardware
scenarios,

• to demonstrate the effectiveness and usability of the SparCity framework by enhancing
the computing scale and energy efficiency of challenging real-life applications.

• to deliver a robust, well-supported and documented SparCity framework into the hands
of computational scientists, data analysts, and deep learning end-users from industry and
academia.

1.1 objectives of this deliverable

The objective of Deliverable 3.4 is to describe the development and evaluation of our work for Task
3.4 Topology-aware hierarchical partitioning. In this task a hierarchical multi-level partitioning
approach is developed that can take into consideration the complex topology of modern HPC
systems by applying different partitioning strategies at each level. This partitioner is especially
important for large graphs coming from deep neural networks and social networks.

1.2 work performed

For this deliverable, there are two lines of work: The main line investigates the performance of
distributed SpMV on Graphcore IPUs. On this architecture, partitioning poses an especially tough
challenge because of the limited amount of memory on the processor tiles. The performance of
this kernel is analyzed under different settings and different architectures; multicore CPU nodes
and Graphcore GC200 IPU. In the second line, we experimented using GPUs for partitioning
by exploiting a graph embedding tool. Unfortunately, we were not able to obtain good results.
However, we aim to continue this line of work in the future.

SparCity 1



2 fast partitioning on modern architectures

2.1 contributions by each partner

SIMULA performed the work described in Section 3. SU and KU equally contributed to the study
in Section 4.

2.2 deviations (if any)
For this task, the initial plan was developing an in-house partitioner. However, experimenting
with existing partitioners such as SCOTCH that can take the topology graph into account and
perform mapping, we decided that the hierarchical multi-level partitioning approach, which is
the main target Task 3.4, can be built on top of them.

3 distributed spmv on graphcore ipus

3.1 partitioning for sparse computations

Partitioning is essential for distributing parallel workloads. The predominant paradigm for par-
allel, sparse computations is to represent data and computations as a graph (or hypergraph),
thereby reflecting the, often irregular, connections between the underlying data and the com-
putations to be performed. The (hyper)graph is then partitioned to determine how the data
and computations should be distributed across available processors. Moreover, the resulting
partitioning must be of high quality to ensure that work is well balanced among processors and
to minimise parallel overhead, e.g., due to additional synchronisation or communication that is
incurred from the parallelisation itself.

In this report, we consider the impact of partitioning on distributed-memory parallel sparse
matrix-vector multiplication (SpMV), a sparse linear algebra kernel that is frequently recurring in
scientific computing and graph processing. It is especially important in sparse linear solvers, and
it is used, for example, in the cardiac modelling application1 that serves as one of the real-world
use cases for demonstrating methods and tools developed in the SparCity project.

For sparse computations on the Graphcore IPU,2 partitioning poses an especially tough
challenge because of the limited amount of memory on the processor tiles. Each of the 1 472

tiles on a GC200 IPU is equipped with only 624 KB of SRAM, thus limiting the amount of data
that can be stored on the tile and imposing severe restrictions for parallelising and distributing
sparse workloads. If even a single part of the data exceeds the memory capacity of a tile after
partitioning, then the computation fails and cannot be carried out without adding more memory.
To use the IPUs effectively, partitioning should aim to minimise parallel overhead and, ideally,
limit the memory footprint on each processor. Although the IPU presents a somewhat extreme
example, high quality partitioning and low parallel overhead is equally important for other
parallel computing architectures, such as clusters of multicore CPUs or GPUs.

In the following, we analyse the parallel overhead associated with performing parallel SpMV
in a distributed-memory setting. We also present results from numerical experiments that concern

1J. Langguth et al. “Parallel performance modeling of irregular applications in cell-centered finite volume methods
over unstructured tetrahedral meshes”. Journal of Parallel and Distributed Computing 76 (2015). Special Issue on
Architecture and Algorithms for Irregular Applications, pp. 120–131. issn: 0743-7315. doi: 10.1016/j.jpdc.2014.
10.005.

2Luk Burchard et al. “Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors: An Example of
Accelerating In-Silico Cardiac Simulation”. Frontiers in Physics 11 (2023). doi: 10.3389/fphy.2023.979699.

SparCity 2

https://doi.org/10.1016/j.jpdc.2014.10.005
https://doi.org/10.1016/j.jpdc.2014.10.005
https://doi.org/10.3389/fphy.2023.979699


partitioning sparse matrices for multicore CPU nodes and for the Graphcore GC200 IPU.

3.2 distributed sparse matrix-vector multiplication

This section describes a parallel sparse matrix-vector multiplication algorithm for P processors
with distributed, private memories. After describing the algorithm and associated data struc-
tures, we briefly discuss the parallel overhead in terms of memory footprint and communication
requirements that result from parallelising the computation.

Let A denote a square, N-by-N matrix, and let x and y denote vectors of size N. The aim of
the SpMV operation is to compute the product,

y← Ax+ y, (1)

in the case of A being a sparse matrix. Suppose therefore that A has K nonzeros ai1,j1
, ai2,j2

, . . . ,
aiK,jK ∈ R, where ik and jk denote the row and column, respectively, of the k-th nonzero for
k = 1, 2, ...,K. Generally speaking, we assume that K is much smaller than the total number of
matrix entries N×N.

3.2.1 partitioning the matrix rows

For the purpose of computing the matrix-vector product in parallel, it is natural to perform a
rowwise decomposition of the matrix A. This is easily seen after expressing the matrix-vector
product componentwise, i.e.,

yik ←
∑
k

aik,jkxjk + yik , (2)

and noting that every row yi can be computed independently.
The first step is therefore to partition the rows of A into P parts. A simple choice is to partition

the set {1, 2, ...,N} into contiguous blocks of equal size (e.g., each block having ⌊N/P⌋ rows, plus
some remainder if N is not divisible by P). It is, however, common practice to apply a graph
partitioner3 to divide the matrix rows in a way that balances the number of nonzeros in each part
and, as we discuss later, also reduces the need for communication in parallel computations.

If A is symmetric, then the graph to be partitioned is precisely the undirected graph that arises
from considering A as an adjacency matrix. Otherwise, if A is unsymmetric, an undirected graph
is instead obtained by taking the symmetrisation A+AT as the adjacency matrix. If necessary,
weights can be assigned to nodes (or edges) of the graph to reflect certain costs associated with
rows (or nonzeros). For the purpose of this report, unweighted graphs are used to perform the
partitioning in the numerical experiments described later.

Given a row partitioning into P parts, the matrix is decomposed accordingly, A =
∑P

p=1
A(p).

The matrix A(p) consists of all nonzeros from A that belong to the m rows i1, i2, ..., im that were
assigned to the p-th part of the row partitioning. The output vector y is likewise decomposed,
y =

∑P
p=1

y(p), such that y(p) consists of the same subset of m rows as the matrix A(p). The

3G. Karypis and V. Kumar. “Multilevel algorithms for multi-constraint graph partitioning”. Proceedings of the
IEEE/ACM SC98 Conference (1998). doi: 10.1109/sc.1998.10018; François Pellegrini and Jean Roman. “Scotch:
A software package for static mapping by dual recursive bipartitioning of process and architecture graphs”. High-
Performance Computing and Networking. Springer Berlin Heidelberg, 1996, pp. 493–498; Peter Sanders and Christian
Schulz. “Think Locally, Act Globally: Highly Balanced Graph Partitioning”. Experimental Algorithms, 12th International
Symposium, SEA 2013, Rome, Italy, June 5-7, 2013. Proceedings. Vol. 7933. Springer, 2013, pp. 164–175; E. G. Boman
et al. “The Zoltan and Isorropia Parallel Toolkits for Combinatorial Scientific Computing: Partitioning, Ordering, and
Coloring”. Scientific Programming 20.2 (2012), pp. 129–150.

SparCity 3

https://doi.org/10.1109/sc.1998.10018


SpMV operation in Eq. (2) is thus reduced to independent matrix-vector products,

y(p) ← A(p)x+ y(p), (3)

for each part p = 1, 2, ...,P. Now, after distributing A(p) and y(p) to process p, these matrix-vector
products may be computed in parallel.

3.2.2 distributing the input vector

To achieve a scalable SpMV algorithm, it is also necessary to decompose and distribute the input
vector x. Note that a given input vector value, xj, may be needed in several of the matrix-vector
products in Eq. (3). In fact, the value xj is needed to compute y(p) if the matrix A(p) contains
one or more nonzeros in column j. A straightforward, rowwise distribution of x is therefore not
sufficient’ and more effort is needed to suitably decompose the input vector.

First, note that to compute y(p), we need only the values of x that correspond to non-empty
columns of A(p), i.e., columns having one or more nonzeros. Second, for a given part of the
matrix, A(p), we categorise its non-empty columns into the following three groups:

1. Columns owned exclusively by the given part, meaning that nonzeros of A in those columns
are located only in the rows belonging to A(p) and not in any other rows.

2. Shared columns owned by the given part, meaning any column j such that row j belongs to
A(p), according to the rowwise matrix partitioning, and, additionally, one or more nonzeros
of A are located in rows belonging to another part A(q), such that p ̸= q.

3. Shared columns owned by other parts, meaning any column j such that row j belongs to
A(q), according to the rowwise matrix partitioning, and, additionally, one or more nonzeros
of A are located in rows belonging to A(p), where p ̸= q.

The categories identified above can be used to explain the communication needed to compute a
given part of the output vector y(p).

More precisely, the first category relates to input vector values xj that are only needed to
compute a single part of the output vector, y(p). As a result, distributing xj together with y(p) and
A(p) means that no communication is required with respect to xj. The remaining two categories,
on the other hand, concern input vector values that are needed to compute multiple parts of the
output vector. These values must therefore be exchanged before computing the corresponding
matrix-vector products. Suppose that the input vector x is partitioned and distributed in the same
way as the output vector y. Then the value xj must be sent from process p to one or more other
processes if column j belongs to the second category. Conversely, the value xj must be received
by process p from another process if column j belongs to the third category.

3.2.3 parallel overhead

The parallel overhead of the distributed SpMV algorithm can be attributed to matrix columns
that are shared by different parts of the matrix after partitioning. If a given input vector value
xj is assigned to a process p, then the process incurs communication overhead proportional to
the number of other processes having nonzeros in column j in their part of the matrix. Moreover,
a process incurs an overhead in terms of memory footprint for every non-empty column j in its
part of the matrix for which it does not own the corresponding input vector value xj.

SparCity 4



recipient
1 2 3 4

se
nd

er

1 - 65.20 21.07 24.54

2 53.55 - 49.52 7.40

3 21.59 58.84 - 60.92

4 24.45 7.51 53.58 -

(a) block partitioning

recipient
1 2 3 4

se
nd

er

1 - 39.27 0 19.45

2 38.72 - 38.02 25.24

3 0 38.05 - 38.70

4 19.39 25.14 38.40 -

(b) METIS

recipient
1 2 3 4

se
nd

er

1 - 39.91 10.80 31.87

2 40.23 - 27.18 5.70

3 10.89 26.63 - 31.45

4 31.12 5.77 31.55 -

(c) SCOTCH

Table 1 Message sizes (in KiB) for each pair of communicating processes when performing distributed SpMV
with the “heart03” matrix partitioned into 4 parts. Results are shown for three different partitioning methods.

3.3 numerical experiments

In the following experiments, we consider sparse matrices obtained from a cardiac monodomain
solver,4 which has also been ported to Graphcore’s IPU.5 We partition the matrices using three
different methods, including a simple block partitioning that divides matrix rows into equal-sized
contiguous blocks, as well as partitioning the matrix rows using the graph partitioners METIS6

and SCOTCH.7 The graph partitioners are configured with their default options.

3.3.1 example of partitioning and irregular communication

As an initial example, we consider the matrix “heart03”, which consists of 1 607 708 rows and
columns and a total of 23 597 002 nonzeros, and partition it into 4 parts. First, we note that
the block partitioning results in exactly the same number of rows in each part, whereas METIS
and SCOTCH produce partitions where the number of rows in each part differs by less than
1 %. Moreover, the number of nonzeros in each part differs by 5.1 %, 2.2 % and 4.0 % for block
partitioning, METIS and SCOTCH, respectively. These results are expected because the matrix in
question has almost exactly the same number of nonzeros in every row, which is a property of
the particular numerical method from which the matrix arises.

Next, Table 1 shows the communication volume (in KiB) of each process needed to perform
the SpMV operation after partitioning the “heart03” matrix into 4 parts. We note that the com-
munication varies considerably between processes. For example, the ratios between the largest
and smallest (non-empty) messages are 8.8×, 2.0× and 7.1× for block partitioning, METIS and
SCOTCH, respectively. Also, the partitioning produced by METIS requires fewer messages,
because processes 1 and 3 do not need to exchange data.

In spite of the graph partitioners’ ability to balance the number of rows and nonzeros between
parts, as explained above, the communication between processors is far from being balanced.
Moreover, in practice, the speed of point-to-point communications between pairs of processors
depends on whether they are located, for instance, on the same socket, on a different socket on
the same node, or on different nodes.8 As a result, the imbalance in communication may be

4Langguth et al., “Parallel performance modeling of irregular applications in cell-centered finite volume methods
over unstructured tetrahedral meshes”.

5Burchard et al., “Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors: An Example of
Accelerating In-Silico Cardiac Simulation”.

6Karypis and Kumar, “Multilevel algorithms for multi-constraint graph partitioning”.
7Pellegrini and Roman, “Scotch: A software package for static mapping by dual recursive bipartitioning of process

and architecture graphs”.
8Andreas Thune et al. “Detailed Modeling of Heterogeneous and Contention-Constrained Point-to-Point MPI

Communication”. IEEE Transactions on Parallel and Distributed Systems 34.5 (2023), pp. 1580–1593. doi: 10.1109/TPDS.
2023.3253881.

SparCity 5

https://doi.org/10.1109/TPDS.2023.3253881
https://doi.org/10.1109/TPDS.2023.3253881


(a) METIS (b) SCOTCH

Figure 1 Memory footprint (in KiB) per IPU tile for parallel SpMV with the “heart05” matrix on up to 4
GC200 IPUs.

exacerbated if processes with higher communication volumes are placed far apart or suffer from
a slow interconnection.

A hierarchical or topology-aware mapping of the parallel SpMV computation onto the un-
derlying processors can, in principle, account for both irregular communication patterns and
non-uniform speed of communication between processors. The general idea is that pairs of
submatrices having the highest communication volumes should be mapped to pairs of proces-
sors with high-speed communication links. One option is to use more advanced features of
the SCOTCH9 graph partitioner, which can perform topology-aware graph partitioning using a
dual recursive bipartitioning method.10 Various common topologies are supported, including
hypercubes, meshes, tori, and trees.

3.3.2 partitioning for graphcore gc200 ipus

In this section, we partition the matrix “heart05” for multiple Graphcore IPUs. The matrix has
7 205 076 rows and columns and 107 994 304 nonzeros. The memory capacity of a single IPU is
897 MiB, but the memory footprint for storing the sparse matrix (in ELLPACK format) and both
vectors in single precision floating point is 878.9 MiB and is therefore unlikely to fit on a single
IPU.

Figure 1 shows the memory footprint per IPU tile needed for the parallel SpMV after parti-
tioning the matrix for up to 4 IPUs using both METIS and SCOTCH. Both partitioners produce
similar results and show that 2 IPUs are needed because the memory footprint exceeds the 624 KiB
capacity on many tiles.

As we also observed in the previous subsection, the message sizes involved in the point-
to-point communications of parallel SpMV can vary greatly. Figure 2 shows histograms of the
message sizes in the case of partitioning for 2 and 4 IPUs using METIS. The smallest messages
are typically only a few bytes, but the largest messages are about 1 300 and 800 bytes when
partitioning for 2 and 4 IPUs, respectively. Moreover, as shown in Figure 3, the communication
volume per tile also varies considerably. Here we divide the communication into 1) messages
between tiles on the same IPU and 2) messages between tiles on different IPUs. In any case,

9Pellegrini and Roman, “Scotch: A software package for static mapping by dual recursive bipartitioning of process
and architecture graphs”.

10François Pellegrini. “Static mapping by dual recursive bipartitioning of process architecture graphs”. Proceedings
of IEEE Scalable High Performance Computing Conference. IEEE. 1994, pp. 486–493.

SparCity 6



(a) 2 IPUs (b) 4 IPUs

Figure 2 Message sizes (in B) for parallel SpMV with the “heart05” matrix partitioned using METIS for 2
or 4 GC200 IPUs.

whereas the communication volume within IPUs is about 150 KiB or less for most IPU tiles.
However, some IPU tiles must communicate up to nearly 500 KiB within an IPU and 250 KiB
across IPUs.

The observed imbalance of communication load across processors is bound to affect the
performance of parallel SpMV computations on highly parallel architectures, such as the GC200

IPUs. Standard graph partitioners aim to reduce the communication volume, e.g., by minimising
metrics such as the number of edges cut, but they do not currently allow for balancing the
communication load among processors.

SparCity 7



(a) METIS

(b) SCOTCH

Figure 3 Communication volume (in KiB) per IPU tile for parallel SpMV with the “heart05” matrix parti-
tioned using METIS and SCOTCH for 4 GC200 IPUs. The communication volumes within IPUs and across
IPUs are shown separately.

SparCity 8



4 using graph embedding for graph partitioning

Graph embedding has emerged as a fundamental technique for representing complex relational
data structures, such as social networks and citation networks, in a lower-dimensional space
amenable to machine learning algorithms. However, embedding large graphs efficiently while
preserving their structural information poses challenges due to computational complexity and
resource constraints. GOSH,11 a GPU-based tool whose development was partially funded by
the SparCity project, has drawn attention for its ability to address these challenges by efficiently
embedding large graphs on a single GPU. Building upon this foundation, in this report, the
enhancements made on top of the GOSH algorithm, building upon its efficient potential graph
embedding capabilities are described in detail. A high-level figure of how GOSH works in a
multi-level fashion is given in Figure 4.

Figure 4 An overview of GOSH: (a) The input graph, GO, is iteratively coarsened into smaller graphs until
an exit condition is met. Then, starting from the smallest, GD−1, each graph Gi is embedded. (b) To embed
Gi, the embedding Mi+1 is projected onto Gi to initialize Mi which is then fine tuned. If Gi and Mi fits to
the GPU memory GOSH carries out Sequential-Kernel Execution. Otherwise, it carries out Directed Acyclic
Graph Execution to perform the embedding on a single GPU.

The motivation comes from the fact that the embeddings can be successfully used for edge
prediction as well as node classification. Hence, given the embeddings in a d-dimensional space,
a well-defined ordering of these embeddings will generate a good partitioning. For instance,
Figure 5 the results for link prediction of GOSH and other tools. As the figure shows, the AUC-
ROC scores are extremely accurate. Hence, the graph embeddings can indeed learn the topology
of the graph which can be useful for partitioning.

In addition to this relationship, we also aim to improve the embedding process and hence
have a faster, high-quality partitioning tool. First, we need to state that GOSH uses a Stochastic
Gradient Descent (SGD) based optimization technique with positive/negative updates on the
embedding vectors. Our focus lies on integrating a vertex similarity measure, specifically Jaccard
similarity, into this update procedure. We assume in this way this local information can be
propagated to the global embedding space.

A similarity measure is a way of measuring how vertices are related (concerning their neigh-
bourhood) to each other in a quantitative manner: the value gets higher when the neighbourhoods

11Amro Alabsi Aljundi, Taha Atahan Akyildiz, and Kamer Kaya. “Boosting Graph Embedding on a Single GPU”.
IEEE Transactions on Parallel and Distributed Systems 33.11 (2022), pp. 3092–3105. doi: 10.1109/TPDS.2021.3129617.

SparCity 9

https://doi.org/10.1109/TPDS.2021.3129617


Figure 5 VERSE and GOSH uses t = 16. MILE is a sequential tool. GPU-based tools use the V100 GPU.
The speedup values are given w.r.t. VERSE. AUCROC scores are in percentage.

are more alike. Although we focused on Jaccard similarity, various vertex similarity measure-
ments in the literature will be investigated in the future. Jaccard similarity offers a valuable metric
for measuring the similarity between sets, commonly employed in various domains, including
graph analysis. Leveraging Jaccard similarity enables the capture of structural similarities be-
tween vertices based on their neighbourhood information. However, computing the similarity
for all the vertex pairs is not a practical task. To integrate Jaccard similarity into the embedding
process within the GOSH algorithm, a fast and efficient data structure, Bloom Filters (BF), have
been used. A BF is a probabilistic data structure that is based on hashing. It is extremely space
efficient and is typically used to add elements to a set and test if an element is in a set. The
expectation behind this integration was to enrich the embedding process by considering local
neighbourhood similarities, thereby enhancing the overall quality of the embeddings produced
by the GOSH algorithm. To comprehensively assess the effectiveness of this approach, an ex-
tensive array of experiments were executed. These tests were carefully planned to see how well
adding Jaccard similarity affected the quality of the embeddings and how fast the convergence
was obtained. This multi-faceted evaluation was underpinned by the exploration of various con-
figurations, encompassing a spectrum of parameters such as different numbers of positive and
negative samples, learning rates, and alpha values.

We carefully selected to mirror real-world graph structures. These datasets spanned across
different kinds of domains, each characterized by unique graph structures and challenges. For
instance, datasets from domains such as Computational Fluid Dynamics Problems (e.g. ”garon1”),
Circuit Simulation Problems (e.g., ”Hamm/add20”), Acoustics Problems (e.g., ”Cote/tmplate”),
Structural Problems (e.g., ”HB/blckhole”), and Networks (e.g., ”web-edu”), were selected to
ensure a comprehensive evaluation across various application scenarios.

Each dataset is processed by the GOSH under a fine-tuned configuration. Subsequently, the
resulting embedding values were used to sort the vertices of the respective graphs, followed by
partitioning into distinct groups. In the final phase of analysis, the cut metric was computed for
each of the previously mentioned partitioning approaches, thereby facilitating a granular assess-
ment of the partitioning quality. As a baseline, the state-of-the-art METIS graph partitioner12 was
employed for partitioning the datasets into groups, serving as a benchmark for the comparison.
To summarize our results, we have found that

• For social networks, the results are promising. There are cases where the partitioning quality
matches with state-of-the-art tools such as METIS.

12George Karypis and Vipin Kumar. METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning
Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. 1998.

SparCity 10



• However, for meshes and graphs with high diameters such as road networks, the results
are far from what the state-of-the-art generates.

• Integrating the similarity metrics to the SGD process is a tedious task. Although there are
cases, runs, etc., that do not make the gradients explode, one needs to carefully select the
learning rate schedule or normalize the similarity correctly. This is in fact why we cannot
provide numerical results since we consider them they are not robust.

In conclusion, the enhancements introduced to the GOSH algorithm, such as Jaccard similarity,
have been demonstrated to be promising. However, this study is far from being completed and
there are various variants to be experimented with. We will continue to work on this problem in
the near future.

SparCity 11



references

Aljundi, Amro Alabsi, Taha Atahan Akyildiz, and Kamer Kaya. “Boosting Graph Embedding on
a Single GPU”. IEEE Transactions on Parallel and Distributed Systems 33.11 (2022), pp. 3092–3105.
doi: 10.1109/TPDS.2021.3129617.

Boman, E. G. et al. “The Zoltan and Isorropia Parallel Toolkits for Combinatorial Scientific Com-
puting: Partitioning, Ordering, and Coloring”. Scientific Programming 20.2 (2012), pp. 129–150.

Burchard, Luk et al. “Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation”. Frontiers in Physics 11 (2023). doi:
10.3389/fphy.2023.979699.

Karypis, G. and V. Kumar. “Multilevel algorithms for multi-constraint graph partitioning”. Pro-
ceedings of the IEEE/ACM SC98 Conference (1998). doi: 10.1109/sc.1998.10018.

Karypis, George and Vipin Kumar. METIS: A Software Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. 1998.

Langguth, J. et al. “Parallel performance modeling of irregular applications in cell-centered finite
volume methods over unstructured tetrahedral meshes”. Journal of Parallel and Distributed
Computing 76 (2015). Special Issue on Architecture and Algorithms for Irregular Applications,
pp. 120–131. issn: 0743-7315. doi: 10.1016/j.jpdc.2014.10.005.

Pellegrini, François. “Static mapping by dual recursive bipartitioning of process architecture
graphs”. Proceedings of IEEE Scalable High Performance Computing Conference. IEEE. 1994, pp. 486–
493.

Pellegrini, François and Jean Roman. “Scotch: A software package for static mapping by dual
recursive bipartitioning of process and architecture graphs”. High-Performance Computing and
Networking. Springer Berlin Heidelberg, 1996, pp. 493–498.

Sanders, Peter and Christian Schulz. “Think Locally, Act Globally: Highly Balanced Graph Parti-
tioning”. Experimental Algorithms, 12th International Symposium, SEA 2013, Rome, Italy, June 5-7,
2013. Proceedings. Vol. 7933. Springer, 2013, pp. 164–175.

Thune, Andreas et al. “Detailed Modeling of Heterogeneous and Contention-Constrained Point-
to-Point MPI Communication”. IEEE Transactions on Parallel and Distributed Systems 34.5 (2023),
pp. 1580–1593. doi: 10.1109/TPDS.2023.3253881.

SparCity 12

https://doi.org/10.1109/TPDS.2021.3129617
https://doi.org/10.3389/fphy.2023.979699
https://doi.org/10.1109/sc.1998.10018
https://doi.org/10.1016/j.jpdc.2014.10.005
https://doi.org/10.1109/TPDS.2023.3253881


4.1 history of changes

Version Author(s) Date Comment
0.1 Kamer Kaya 20/03/2024 First draft
0.2 Beyza Cavusoglu 22/03/2024 Section 4

0.3 James Trotter 27/03/2024 Section 3

0.4 Kamer Kaya 29/03/2024 Finalizing and proofreading
0.4.1 Didem Unat 29/03/2024 Minor changes and proofreading

Table 2 Document History of Changes

SparCity 13


	Introduction
	Objectives of this Deliverable
	Work Performed

	Fast Partitioning on Modern Architectures
	Contributions by Each Partner
	Deviations (if Any)

	Distributed SpMV on Graphcore IPUs
	Partitioning for sparse computations
	Distributed sparse matrix-vector multiplication
	Partitioning the matrix rows
	Distributing the input vector
	Parallel overhead

	Numerical experiments
	Example of partitioning and irregular communication
	Partitioning for Graphcore GC200 IPUs


	Using Graph Embedding for Graph Partitioning
	History of Changes


