
SuperTwin and API

Deliverable No: D4.5
Deliverable Title: SuperTwin and API
Deliverable Publish Date: 31 March 2024

Project Title: SparCity: An Optimization and Co-design Framework for
Sparse Computation

Call ID: H2020-JTI-EuroHPC-2019-1
Project No: 956213

Project Duration: 36 months
Project Start Date: 1 April 2021

Contact: sparcity-project-group@ku.edu.tr

List of partners:

Participant no. Participant organisation name Short name Country
1 (Coordinator) Koç University KU Turkey
2 Sabancı University SU Turkey
3 Simula Research Laboratory AS Simula Norway
4 Instituto de Engenharia de Sistemas e Computadores, INESC-ID Portugal

Investigação e Desenvolvimento em Lisboa
5 Ludwig-Maximilians-Universität München LMU Germany
6 Graphcore AS* Graphcore Norway

*until M21

i

contents

1 Introduction 1

1.1 Objectives of this Deliverable 1

1.2 Work Performed 3

1.3 Deviations and Counter Measures 3

1.4 Resources 3

2 SuperTwin and API 5

3 SuperTwin: Digital Twins for HPC 7

3.1 The Knowledge Base 7

3.2 Adding Compute Devices to SuperTwin 12

4 The Mechanics of SuperTwin 13

4.1 Abstraction Layer 14

4.2 Cache-aware Roofline Model in SuperTwin 16

4.2.1 Model construction 16

4.2.2 Application characterization 16

5 Experimental Results 17

5.1 Throughput and Accuracy 17

5.2 Resource Usage of SuperTwin 19

5.3 Time Overhead 22

5.4 Monitoring Live Performance Events 22

5.5 Live-CARM feature 23

6 Conclusion and Future Work 25

7 Contributions by Each Partner 25

8 Deviations (if Any) 25

8.1 History of Changes 29

ii

1 introduction

The SparCity project is funded by EuroHPC JU (the European High Performance Computing
Joint Undertaking) under the 2019 call of Extreme-Scale Computing and Data-Driven Technologies
for research and innovation actions. SparCity aims to create a supercomputing framework
that will provide efficient algorithms and coherent tools specifically designed for maximizing
the performance and energy efficiency of sparse computations on emerging High-Performance
Computing (HPC) systems, while also opening up new usage areas for sparse computations in
data analytics and deep learning.

Sparse computations are commonly found at the heart of many important applications, but
at the same time, it is challenging to achieve high performance when performing sparse compu-
tations. SparCity delivers a coherent collection of innovative algorithms and tools for enabling
high efficiency of sparse computations on emerging hardware platforms. More specifically, the
objectives of the project are:

• to develop a comprehensive application and data characterization mechanism for sparse
computation based on the state-of-the-art analytical and machine-learning-based perfor-
mance and energy models,

• to develop advanced node-level static and dynamic code optimizations designed for mas-
sive and heterogeneous parallel architectures with complex memory hierarchy for sparse
computation,

• to devise topology-aware partitioning algorithms and communication optimizations to boost
the efficiency of system-level parallelism,

• to create digital SuperTwins of supercomputers to evaluate and simulate what-if hardware
scenarios,

• to demonstrate the effectiveness and usability of the SparCity framework by enhancing
the computing scale and energy efficiency of challenging real-life applications.

• to deliver a robust, well-supported and documented SparCity framework into the hands
of computational scientists, data analysts, and deep learning end-users from industry and
academia.

1.1 objectives of this deliverable

The diversity within the data center and HPC ecosystems brings challenges in system design,
performance engineering, and optimization, necessitating innovative models and approaches to
skilfully steer inside a complicated computing environment. Performance variations caused by
hardware capabilities and software factors such as load imbalances, CPU throttling, reduced fre-
quency, shared resource contention, and network congestion can result in up to a 100% difference
in execution times for the same computation and input data.1 To find the root causes of these
variations, one requires a comprehensive knowledge on the computational system generated via
novel monitoring, profiling, and forecasting tools.

1Aksar. “E2EWatch: An End-to-End Anomaly Diagnosis Framework for Production HPC Systems””. Euro-Par 2021:
Parallel Processing. Springer International Publishing, 2021, pp. 70–85.

SparCity 1

Various tools that can systematically collect and store information from performance metric
sources have been developed.2 However, they do not create a comprehensive knowledge base
and most do not provide a live and/or automated analysis framework. Hence, there is a need
for innovative tools that are capable of tracking every component within a single server or
a full-scale cluster effectively leveraging kernel statistics and physical hardware performance
counters. Capturing the hidden patterns and providing insights, digital twins, virtual models
that mirror physical systems, can be an imminent solution to model, observe, and analyze the
inherent performance variability in today’s parallel and distributed systems. Crafting a virtual
replica of a physical system, a twin can facilitate a meticulous exploration and analysis of system
behavior, enabling researchers and engineers to optimize system configurations, simulate different
scenarios, and predict performance under various conditions.

We propose SuperTwin, a major step to create a virtual modeling and simulation framework
to untangle and comprehend the underlying complexities and interactions, thereby making judi-
cious decision-making, enhanced system performance, and efficient resource management possi-
ble. Within SuperTwin, the knowledge base is deeply incorporated in almost every functionality,
and contains the machine specification, topology, configuration parameters of the tools/frame-
works used within, and historical job metadata linked to the sampled performance metrics.

While digital twin ontologies exist for various domains, such as industrial machines,3 cities4

and smart buildings5 there is limited work on ontologies for a computational system. Moreover,
existing twins collect data from stable sources, e.g., a thermostat, with a constant metric and
frequency. On the contrary, SuperTwin tackles highly sensitive and volatile platforms, which
impose a novel set of challenges to its design, such as being minimally disruptive in terms of
performance and sustaining high accuracy with a limited number of performance-monitoring
units (PMUs) – specialized components leveraging programmable registers dedicated to monitoring
and recording performance-related events and metrics.

This deliverable describes the design and validation of SuperTwin , focusing on its potential
to address the challenges posed by the ever-evolving complex landscape of computational systems.
In addition, the API documentation is added as an Appendix. In this deliverable:

• To our knowledge, we propose the design of the first open-source digital twin framework,
SuperTwin, tailored for data center and HPC servers.

• We derive an ontology as a guide to comprehending data center and HPC servers in an

2Brandt. Lightweight Distributed Metric Service (LDMS): Run-time Resource Utilization Monitoring. English. Tech. rep.
SAND2013-6521C. Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM),
Albuquerque, NM (United States), 2013. url: https://www.osti.gov/biblio/1106397 (visited on 09/27/2021);
Agelastos. The Lightweight Distributed Metric Service: A Scalable Infrastructure for Continuous Monitoring of Large Scale Com-
puting Systems and Applications. English. Tech. rep. SAND2014-19868C. Sandia National Lab. (SNL-NM), Albuquerque,
NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States), 2014. doi: 10.1109/SC.2014.18.
url: https://www.osti.gov/biblio/1315267 (visited on 09/27/2021); Nagios. Nagios. https://www.nagios.org/.
Accessed: 2022-12-12. 2022; Adhianto. “HPCTOOLKIT: Tools for Performance Analysis of Optimized Parallel Pro-
grams Http://Hpctoolkit.Org”. Concurr. Comput.: Pract. Exper. 22.6 (2010), pp. 685–701. issn: 1532-0626; Roy.
“PerfAugur: Robust diagnostics for performance anomalies in cloud services”. 2015 IEEE 31st International Conference
on Data Engineering. 2015, pp. 1167–1178. doi: 10.1109/ICDE.2015.7113365.

3Steinmetz. “Internet of Things Ontology for Digital Twin in Cyber Physical Systems”. 2018 VIII Brazilian Symposium
on Computing Systems Engineering (SBESC). 2018, pp. 154–159. doi: 10.1109/SBESC.2018.00030.

4Deng. “A systematic review of a digital twin city: A new pattern of urban governance toward smart cities”. Journal
of Management Science and Engineering 6.2 (2021), pp. 125–134. issn: 2096-2320. doi: https://doi.org/10.1016/j.
jmse.2021.03.003.

5Qiuchen Lu et al. “Developing a dynamic digital twin at building and city levels: A case study of the West
Cambridge campus”. Journal of Management in Engineering 36 (2019). doi: 10.1061/(ASCE)ME.1943-5479.0000763.

SparCity 2

https://www.osti.gov/biblio/1106397
https://doi.org/10.1109/SC.2014.18
https://www.osti.gov/biblio/1315267
https://www.nagios.org/
https://doi.org/10.1109/ICDE.2015.7113365
https://doi.org/10.1109/SBESC.2018.00030
https://doi.org/https://doi.org/10.1016/j.jmse.2021.03.003
https://doi.org/https://doi.org/10.1016/j.jmse.2021.03.003
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000763

organized and intuitive manner. Based on this, SuperTwin constructs a knowledge base
which is used to perform all the tasks on the linked performance data.

• To handle the architectural diversity and be as automated as possible, SuperTwin leverages
an abstraction layer.

• Modern profiling capabilities such as live monitoring and cache-aware roofline analysis, are
designed to provide real-time insights with minimal interference.

• We demonstrate the capabilities of SuperTwin on many microbenchmarks and SpMV
kernels.

We have used a variety of high-end servers to assess the practical value of SuperTwin. While
doing this, we have also observed and measured the overhead incurred, precision of measure-
ments and the number of data points that can be collected per second. SuperTwin design is
hardware-agnostic to let users employ it on various systems and allow easy inclusion of any
device type, including GPUs. However, current GPU-monitoring methods only provide aggre-
gated readings and lack the functionality to collect live time-series data. In the current design,
SuperTwin presents aggregated information after a GPU kernel terminates and live information
from NVML. While distributed system support is valuable, this deliverable exclusively focuses
on multi and manycore single-node settings. Preliminary experiments with 4-8 nodes reveal no
additional overhead in SuperTwin.

1.2 work performed

In this deliverable, we introduce the SuperTwin which is an open-source framework designed
and implemented to generate a digital twin for multi and manycore systems. Leveraging its
comprehensive Knowledge Base, which is built upon an HPC-specific ontology aimed at pro-
viding a systematic and intuitive guide for comprehending the performance of data centers or
HPC servers, it rigorously manages telemetry samplers, databases, and visualization frameworks.
The Knowledge Base is generated through an in-depth probing of the computational system. It
enables the configuration and monitoring of performance metric samplers, the generation of real-
time visualizations, the establishment of linked-data connections among acquired information,
and the generation of queries for advanced analysis. With its Abstraction Layer, SuperTwin can
be used as an automated tool for low-level profiling even on components, e.g., CPU sockets, from
different vendors. It has modern profiling capabilities, including live cache-aware roofline model-
ing, crafted to provide real-time insights without impeding system performance. The capabilities
of SuperTwin have been demonstrated on multiple multicore architectures using various mi-
crobenchmarks and a commonly used kernel, sparse-matrix vector multiplication (SpMV), which
is often the bottleneck of many computations.

1.3 deviations and counter measures

There was no deviation from the work plan.

1.4 resources

All the source codes and documentation can be found at.6 It is expected that SuperTwin will
be further extended by us and external contributors to add new functionalities. In the worst case,

6https://github.com/sparcityeu/Digital-SuperTwin

SparCity 3

https://github.com/sparcityeu/Digital-SuperTwin

we will maintain and regularly update the respective SparCity GitHub repository if/when bugs
are reported.

SparCity 4

2 supertwin and api

To our knowledge, there exists no work on using digital twins to model HPC systems; the
literature can be investigated in three contexts; monitoring frameworks, profiling methods, and
digital twin ontologies. To systematically collect and analyze information from performance
metric sources, several frameworks have been developed, e.g., LDMS,7 HPC-Toolkit,8 Ganglia,9

Nagios,10 and PerfAugur.11 E2EWatch12 specializes in system-wide monitoring using Linux
metrics and focuses on anomaly classification and detection. ClusterCockpit,13 a more recent
tool, reports performance metrics from distributed systems to InfluxDB and offers monitoring
dashboards and job history queries. However, these tools have limitations, such as supporting
only preselected, a fixed set of metrics and lacking a comprehensive knowledge representation
and linked-data capabilities.

Linked data is used in different branches of science for knowledge management, such as
biology14 and physics.15 RDF (Resource Description Framework) is a standardized approach
for organizing data as triples, a source node (referred to as a subject), an edge name (known as
a predicate), and a target node (called an object). To enhance this structure, RDFs incorporate
identifiers known as IRIs (Internationalized Resource Identifiers) for node descriptions and prop-
erties. JSON-LD, a serialization of RDF data, has unique attributes, on par with RDF, which makes
it different from the JSON format. The most common attributes are @context, @id and type.
With these, a JSON-LD describes the datatypes, and how to parse and process them. This allows
the creation of large-scale twins of interconnected systems from their building blocks. For each
domain, unique document structures, i.e., ontologies, are designed to keep static metadata. For
liveness, new triples need to be continuously injected, which makes these structures impractical
for managing time-series data as is.16

The current tools fall short of addressing modern system complexities. They typically lack
support for both Linux (software) and hardware performance counter metrics, lack flexible con-
figuration options, and are ill-equipped to create digital twins. This is problematic when dealing
with performance variations caused by multiple factors, like a performance sampler on L1 cache
bandwidth being unaware of system issues such as resource contention or thermal throttling.
Thus, there is a gap in the literature where both ends should meet.

Performance Co-Pilot (PCP)17 is a metric collection, transport, and storage tool that can be
configured to sample every available metric counter on hardware and kernel, and energy usage
of a system by Running Average Power Limit (RAPL)18 and perf interfaces. It supports varying

7Brandt, Lightweight Distributed Metric Service (LDMS); Agelastos, The Lightweight Distributed Metric Service.
8Adhianto, “HPCTOOLKIT: Tools for Performance Analysis of Optimized Parallel Programs

Http://Hpctoolkit.Org”.
9Ganglia. Monitoring system. 2022. url: http://ganglia.sourceforge.net/ (visited on 12/12/2022).

10Nagios, Nagios.
11Roy, “PerfAugur: Robust diagnostics for performance anomalies in cloud services”.
12Aksar, “E2EWatch: An End-to-End Anomaly Diagnosis Framework for Production HPC Systems””.
13Cluster Cockpit. https://www.clustercockpit.org/. Accessed on 30 Sep 2023.
14Xin. “Cross-linking BioThings APIs through JSON-LD to facilitate knowledge exploration”. BMC Bioinformatics 19

(2018). doi: 10.1186/s12859-018-2041-5.
15Xiaoli Chen. “CERN Analysis Preservation: A Novel Digital Library Service to Enable Reusable and Reproducible

Research”. Research and Advanced Technology for Digital Libraries. Springer International Publishing, 2016, pp. 347–356.
16Friedemann. “Linked Data Architecture for Assistance and Traceability in Smart Manufacturing”. MATEC Web of

Conferences 304 (2019), p. 04006. doi: 10.1051/matecconf/201930404006.
17Performance Co-Pilot. https://pcp.io/. Accessed on 30 Sep 2023.
18Vincent M. Weaver et al. “Measuring Energy and Power with PAPI”. 2012 41st International Conference on Parallel

Processing Workshops. 2012, pp. 262–268. doi: 10.1109/ICPPW.2012.39.

SparCity 5

http://ganglia.sourceforge.net/
https://www.clustercockpit.org/
https://doi.org/10.1186/s12859-018-2041-5
https://doi.org/10.1051/matecconf/201930404006
https://pcp.io/
https://doi.org/10.1109/ICPPW.2012.39

sampling rates with negligible overhead, without the code compilation and instrumentation.
SuperTwin leverages PCP to offer a robust and full-fledged analysis framework capable of
enabling the creation of digital twins.

Digital twins for HPC systems differ from those for other physical entities due to the abun-
dance of sensors, with each sensor, such as a hardware register or PMU, capable of reporting
thousands of metrics through re-programming. Treating processes as unique components further
adds to the heterogeneity within the HPC system. DTDL (Digital Twins Definition Language),
a derivation of JSON-LD, consists of six metamodel classes that explain the context of digital
twin components. These classes encompass Interface, Telemetry, Properties, Commands, Relationship,
and various data schemes. In DTDL, each Interface represents a standalone (sub)twin, encom-
passing descriptions of its Properties, Telemetry, and Relationships. SuperTwin combines these
components to hierarchically model an HPC system’s structure, considering each component
(e.g., node, socket, CPU, GPU, memory subsystem, etc.) as a distinct digital twin. The notion
that each interface stands as an individual (sub)twin is a core principle extensively leveraged in
SuperTwin.

The Roofline Model,19 and its numerous variations,20 including the Cache-Aware Roofline
Model (CARM),21 have emerged as invaluable tools to evaluate the computational capabilities
of contemporary processors and pinpointing potential performance limitations.22 SuperTwin

incorporates CARM due to its ability to accurately characterize the entire system by considering
all memory levels. However, the current literature primarily relies on a single tool, adCARM,23

for CARM generation, which is tailored for Intel architectures, leaving a gap in support for AMD
systems. In this work, an extension is introduced to support AMD systems under the SuperTwin

framework. Furthermore, this work also addresses another gap in the area of Roofline modeling in
general; real-time CARM visualization during execution. SuperTwin introduces the novel tool,
the live-CARM panel, which takes performance-counter data and automatically calculates CARM-
related metrics, displaying them in conjunction with other metrics to give users an immediate
idea of how their application performs relative to architectural limits. This panel is a prime
example of what can be achieved by leveraging all the capabilities of SuperTwin.

19Nan Ding and Samuel Williams. “An Instruction Roofline Model for GPUs”. 2019 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS). 2019, pp. 7–18. doi: 10.1109/PMBS49563.
2019.00007.

20Tuomas Koskela et al. “A novel multi-level integrated roofline model approach for performance characterization”.
High Performance Computing: 33rd International Conference, ISC High Performance 2018, Frankfurt, Germany, June 24-28,
2018, Proceedings 33. Springer. 2018, pp. 226–245; Jee Whan Choi et al. “A roofline model of energy”. 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing. IEEE. 2013, pp. 661–672; Aleksandar Ilic, Frederico Pratas,
and Leonel Sousa. “Beyond the roofline: Cache-aware power and energy-efficiency modeling for multi-cores”. IEEE
Transactions on Computers 66.1 (2016), pp. 52–58.

21Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. “Cache-aware roofline model: Upgrading the loft”. IEEE
Computer Architecture Letters 13.1 (2013), pp. 21–24.

22Douglas Doerfler et al. “Applying the roofline performance model to the intel xeon phi knights landing processor”.
High Performance Computing: ISC High Performance 2016 International Workshops, ExaComm, E-MuCoCoS, HPC-IODC,
IXPUG, IWOPH, Pˆ 3MA, VHPC, WOPSSS, Frankfurt, Germany, June 19–23, 2016, Revised Selected Papers 31. Springer.
2016, pp. 339–353; Didem Unat et al. “ExaSAT: An exascale co-design tool for performance modeling”. The International
Journal of High Performance Computing Applications 29.2 (2015), pp. 209–232. doi: 10.1177/1094342014568690. url:
https://doi.org/10.1177/1094342014568690.

23Diogo Marques et al. “Application-driven cache-aware roofline model”. Future Generation Computer Systems 107

(2020), pp. 257–273.

SparCity 6

https://doi.org/10.1109/PMBS49563.2019.00007
https://doi.org/10.1109/PMBS49563.2019.00007
https://doi.org/10.1177/1094342014568690
https://doi.org/10.1177/1094342014568690

@id:dtmi:dt:compute0:socket0;1
@type: Interface

@id:dtmi:dt:compute0:socket1;1
@type: Interface

dtmi:dt:compute1:system;1
@type: Interface

@id:dtmi:dt:cluster0;1

dtmi:dt:compute0:system;1
@type: Interface

@id:"dtmi:dt:fedora:cache54:telemetry1997;1"
@type: HWTelemetry
contents: [
name:"metric101",
PMUName:"CYCLE_ACTIVITY:STALLS_L2_MISS",
SamplerName: "perfevent.hwcounters.CYCLE_ACTIVITY_STALLS_L2_MISS",
DBName:"perfevent_hwcounters_CYCLE_ACTIVITY_STALLS_L2_MISS_value",
FieldName: "_cpu54"]

@id:dtmi:dt:compute0:core19;1
@type: Interface

@id:dtmi:dt:compute0:thread38;1
@type: Interface

@id:dtmi:dt:compute0:thread39;1
@type: Interface

@id:dtmi:dt:compute0:observation22:;1
@type: ObservationInterface

@id:dtmi:dt:compute0:benchmark3:;1
@type: BenchmarkInterface

@id:dtmi:dt:compute0:core20;1
@type: Interface

@id:dtmi:dt:compute0:L1D:cache54;1
@type: Interface

Cluster
Level

System
Level

Socket
Level

Core
Level

Thread
Level

Cache
Level

perf

Figure 1 Knowledge Base of SuperTwin.

3 supertwin: digital twins for hpc

SuperTwin relies on a comprehensive knowledge base and linked-data capabilities. The Knowl-
edge Base (KB), is used by each SuperTwin function as a parameter. It is dynamic, evolving
to capture and link additional telemetry and metadata as they become available. This allows the
twin to continue its operations in a live fashion without a procedural change and comprehend
the factors influencing system performance in real-time. An example KB is shown in Fig. 1.

3.1 the knowledge base

Capturing the target system and its component hierarchy, the KB can be parsed to acquire any
information from topology to database parameters. There are two types of metrics to be sampled
from an HPC system. The first type is SWTelemetry, i.e., software and system state-related metrics
such as the number of processes, CPU, and memory load. These metrics are set to be always
sampled with a low frequency. The second type is HWTelemetry, sampled from PMUs during kernel
executions with high frequency. Sampling different metrics with varying frequencies yields a
need for metadata associated with the host system’s metadata. While time-series databases are
tailored for telemetry data, they cannot keep much (linked) metadata. On the contrary, managing
time-series data via a document database is impractical.24 For this reason, SuperTwin’s KB uses
two types of databases with links between them. To this end, while InfluxDB stores the sampled
SWTelemetry and HWTelemetry, MongoDB stores the knowledge base as JSON-LD extended
with entries for each computation. To associate the computations with telemetry, pointers to
InfluxDB are used to recall corresponding metrics.

Employing a tree-structured KB enables fully automated performance monitoring, anomaly
detection and dashboards with meticulously selected metrics, tailoring various views. These views,
namely (a) Focus View, (b) Level View, and (c) Subtree View, allow for a dynamic and versatile
performance data exploration. Multiple views enable fine- and coarse-grain investigations into
the component and system performance. Overall, SuperTwin can visualize data from different
components and systems in tandem allowing for comprehensive analysis and comparison, further
enriched by the inclusion of various views using Grafana visualization tool.

24Friedemann, “Linked Data Architecture for Assistance and Traceability in Smart Manufacturing”; Katarina
Milenković. “Enabling Knowledge Management in Complex Industrial Processes Using Semantic Web Technol-
ogy”. English. Proceedings of the 2019 International Conference on Theory and Applications in the Knowledge Economy. 2019

International Conference on Theory and Applications in the Knowledge Economy, TAKE 2019 ; Conference date:
03-07-2019 Through 05-01-2020. 2019. url: https://www.take-conference2019.com/.

SparCity 7

https://www.take-conference2019.com/

(a) Focus view for an individual cache

(b) Subtree view for a node

Figure 2 Focus- and subtree-view dashboards, automatically generated by SuperTwin .

SparCity 8

(a) Level-view for different matrix orderings.

(b) Level-view for different architectures.

Figure 3 Level-view dashboards, automatically generated by SuperTwin .

SparCity 9

• The focus (i.e., component) view offers a dashboard that visualizes active metrics from a single
component, e.g., a socket, core, thread, network, disk, or process, providing a focused lens on
individual element performance. This view can be extended to focus on the path from the root
(whole system) to the focused component to investigate the root cause of anomalous behaviors
or performance drawbacks. That is the path navigating from a component perspective to a
more generalized system perspective is analyzed, aiding in tracing and isolating performance
issues. An example focus-view dashboard is given in Fig. 2(a) for an individual cache.

• The level (i.e., type) view generates a dashboard that visualizes multiple instances from the
same type, such as a group of threads, disks and even processes. This view allows the isolation
of a single type, which corresponds to a level in the KB tree, treating them individually or
in comparison to components within the same or a different system, whereas the linked-data
capabilities enable the automatic visualization of component performance across different
machines. For instance, the level-view dashboards for different processes running SpMV (each
with a different reordering of the same matrix) and on two sockets running the SpMV code
with two different orderings on the same matrix are given in Fig. 3(a) and Fig. 3(b), respectively.

• The subtree (i.e., (sub)system) view seeks to zoom into performance events, starting from an
arbitrary node and extending to all connected leaf nodes, moving from a general perspective
to a more specific one, i.e., from a single socket to all cores/caches. The detail intensifies as
the path moves from the root (subsystem) to the leaf (components at the bottom of the KB
hierarchy), facilitating a deeper dive into specific performance events and data. An example
subtree-view dashboard for a single server is given in Fig. 2(d).

KB Lifecycle: The knowledge base is not a static object. It captures more about the system it
represents as time passes by attaching new entries. To initialize the KB, SuperTwin uses its
probing tool. To comprehensively capture the structural details of a system, including component
specifications, inter/intra-relationships, and their associated performance metrics, a detailed prob-
ing is required. SuperTwin targets each hardware component that can be monitored, produce
metrics or affect the overall system performance. Furthermore, it captures their relationships
in a lightweight and adaptable fashion. SuperTwin’s probing relies on widely available Linux
tools to gather data. The system, network, and memory information are collected via lshw. The
CPU, memory/cache topology metadata are collected by parsing likwid-topology from likwid

tools25 and cpuid instruction. When available, disk info is probed from /sys/block/*/device

and SMART26 utility. PMU information is collected with libpfm4 library, which can recognize
model-specific registers and their events of virtually every x86 and ARM processor available on
the market. Upon probing available PMU metrics via libpfm4, and software telemetry via PCP,
are filtered and mapped with the components.

In the initial KB, every single component that performs computation, communication, or I/O
is represented with an Interface. Furthermore, each relationship among these components is
encoded into these interfaces with a Relationship. The available metrics for the components are
filtered and encoded as SWTelemetry and HWTelemetry. This makes precisely pinned executions
and automated queries possible. To keep the KB dynamic and continuously link the system
components to performance data, SuperTwin uses Interfaces and attaches their instances (i.e.,
entries) to KB. For instance, as mentioned above, processes are monitored via per-process kernel

25Thomas Röhl et al. “LIKWID Monitoring Stack: A Flexible Framework Enabling Job Specific Performance mon-
itoring for the masses”. 2017 IEEE International Conference on Cluster Computing (CLUSTER). 2017, pp. 781–784. doi:
10.1109/CLUSTER.2017.115.

26The Smartmontools Team. Smartmontools. Accessed on 5th October 2023. url: https://www.smartmontools.org/.

SparCity 10

https://doi.org/10.1109/CLUSTER.2017.115
https://www.smartmontools.org/

metrics. JSON-LD interfaces are serialized with given parameters into a run-time object. Except
for the ProcessInterfaces, all classes/interfaces have their values assigned as constants during
the generation phase. In contrast, a ProcessInterface is re-instantiated each time it is invoked,
reflecting the dynamic nature of processes. For performance events, SuperTwin has two other
interface classes:

• BenchmarkInterface, and BenchmarkResult as a helper class, is designed to record benchmark
results. SuperTwin is able to perform Cache Aware Roofline Model (CARM), STREAM27 and
High Performance Conjugate Gradient28 (HPCG) benchmarks homogeneously using the
BenchmarkInterface. It contains the source codes of these benchmarks in its codebase and
similar to the probing phase, it first copies these codes to the target system. If required, based
on the information in KB, SuperTwin first compiles the benchmarks on the target system
using the benchmark’s preferred compiler if it exists, e.g., icc or gcc. After the benchmark,
SuperTwin parses the results and creates a BenchmarkInterface with the corresponding
BenchmarkResult.

• ObservationInterface entries encode sampled hardware performance events and system
metrics, executed commands, generated affinity, time and other relevant metadata. Using
the parameters in KB, queries can be generated to automatically retrieve data through these
entries. A basic ObservationInterface entry is shown in Listing 1. The queries automatically
generated by SuperTwin to analyze the BenchmarkEntry in Listing 1 are given in Listing 2.

Performance DB: For long-term data management, thanks to its modular design, SuperTwin

operates a global performance database, SuPerDB. Unlike local instances, SuPerDB employs
cloud instances of MongoDB and InfluxDB. With a global performance database, SuperTwin

aims to accumulate performance metrics from a wide array of systems to enhance architectural
research and train robust machine learning models, particularly leveraging Large Language
Models (LLMs) which can exploit the rich metadata collected to be trained as an assistant for
performance engineering. The users of SuperTwin have the option to report their performance
telemetry readings and the system’s knowledge base to the performance database, alongside their
local instances.

1 {

2 "@type": "ObservationInterface",

3 "@id": "278e26c2 -3fd3 -45e4 -862b-5646 dc9e7aa0",

4 "displayName": "rcm_rma10_mt",

5 "time": 48.667,

6 "command": "./spmv -f rma10.mtx -o rcm -t 4",

7 "modifier": "likwid -pin -q -c S0:0-1@S1:0-1",

8 "no_threads": 4,

9 "involved_threads": [0,1,22,23],

10 "sampled_sw_metrics": ["kernel.percpu.cpu.idle", "mem.numa.alloc.hit", "mem.numa.alloc.

miss"],

11 "sampled_hw_metrics": ["RAPL_ENERGY_PKG", "INSTRUCTION_RETIRED", "FP_ARITH:

SCALAR_DOUBLE", "MEM_LOAD_RETIRED:L1_HIT"],

12 "dashboard": "http :// localhost :3000/d/-PiOFZEVz/pmus -278 e26c2 -3fd3 -45e4 -862b-5646

dc9e7aa0?time =1681499308500& time.window =17000"

13 }

Listing 1: An example ObservationInterface entry which is used to retrieve sampled metrics. A report
is generated on the fly and added to the entry before appending to KB.

27John McCalpin. “Memory bandwidth and machine balance in high performance computers”. IEEE Technical
Committee on Computer Architecture Newsletter (1995), pp. 19–25.

28Jack Dongarra and Michael A Heroux. “Toward a new metric for ranking high performance computing systems”.
Sandia Report, SAND2013-4744 312 (2013), p. 150.

SparCity 11

1 SELECT "_cpu0", "_cpu1", "_cpu22", "_cpu23" FROM "kernel_percpu_cpu_idle" WHERE tag="278

e26c2 -3fd3 -45e4 -862b-5646 dc9e7aa0"

2 SELECT "_node0", "_node1" FROM "mem_numa_alloc_hit" WHERE tag="278e26c2 -3fd3 -45e4 -862b

-5646 dc9e7aa0"

3 SELECT "_cpu0", "_cpu1", "_cpu22", "_cpu23" FROM "

perfevent_hwcounters_fp_arith_scalar_double" WHERE tag="278e26c2 -3fd3 -45e4 -862b-5646

dc9e7aa0"

4 SELECT "_node0", "_node1" FROM "perfevent_hwcounters_RAPL_ENERGY_PKG" WHERE tag="278e26c2

-3fd3 -45e4 -862b-5646 dc9e7aa0"

Listing 2: Queries automatically generated by SuperTwin for the BenchmarkInterface entry
given in Listing 1.

In SuPerDB, the ObservationInterface of SuperTwin evolves into two versions within
the performance database context: TS ObservationInterface and AGGObservationInterface,
where the latter statistically summarizes data using various aggregations, e.g., min, max, mean,
to manage high data volumes. The users require a local SuperTwin instance to access SuPerDB,
visualize performance data, and automatically generate dashboards and reports. Without Super-
Twin, they can only download selected data for ML training. Future adaptations may include
appending source code and binary executables to the collected metadata, facilitating the training
of models that can optimize code and predict performance and potential inefficiencies.

3.2 adding compute devices to supertwin

The integration of a computing device, i.e., FPGA, GPU, etc., into the KB is handled similarly
to other hardware components within a system. Initially, an in-depth probing of the target
devices is done using widely available tools. For instance, in the case of Nvidia GPUs, this
investigation uses nvidia-smi to find available GPUs, their models, bus and process information.
/sys/class/drm/ is used for NUMA location, and DeviceQuery for the hardware specifications
such as the number of SMs, shared memory, and cache sizes. The latest GPUs lack the capability
for real-time hardware telemetry reporting without modifications to the source code. To address
this, we have employed pcp-pmda-nvidia for collecting SWTelemetry, essentially capturing every
metric supported by NVML. Regarding HWTelemetry, we leveraged the approach used in bench-
mark executions. SuperTwin is tasked with creating a wrapper script for initiating the kernel
launch and configuring ncu to record hardware performance events during runtime. Follow-
ing the completion of these executions, SuperTwin analyzes the output from ncu, integrating
these comprehensive performance metrics into the KB through the ObservationInterface. An
example for (a subset of) an Interface encoding a GPU device in KB is given in Listing 3

SparCity 12

1

2 "dtmi:dt:cn1:gpu0;1": {

3 "@type": "Interface",

4 "@id": "dtmi:dt:cn1:gpu0;1",

5 "@context": "dtmi:dtdl:context ;2",

6 "contents": [

7 {

8 "@id": "dtmi:dt:cn1:gpu0:property0 ;1",

9 "@type": "Property",

10 "name": "model",

11 "description": "NVIDIA Quadro GV100"

12 },

13 {

14 "@id": "dtmi:dt:cn1:gpu0:property1 ;1",

15 "@type": "Property",

16 "name": "memory",

17 "description": "34359 Mb"

18 },

19 {

20 "@id": "dtmi:dt:cn1:gpu0:property12 ;1",

21 "@type": "Property",

22 "name": "numa node",

23 "description": 0

24 },

25 {

26 "@id": "dtmi:dt:cn1:gpu0:telemetry1337 ;1",

27 "@type": "SWTelemetry",

28 "name": "metric4",

29 "SamplerName": "nvidia.memused",

30 "DBName": "nvidia_memused",

31 "fieldName": "_gpu0",

32 },

33 {

34 "@id": "dtmi:dt:cn1:gpu0:telemetry1404 ;1",

35 "@type": "HWTelemetry",

36 "name": "metric137",

37 "PMUName": "ncu",

38 "SamplerName": "gpu__compute_memory_access

39 _throughput",

40 "DBName": "ncu_gpu__compute_memory_access

41 _throughput",

42 "FieldName": "_gpu0",

43 "description": "Compute Memory Pipeline :

44 throughput of internal activity within

45 caches and DRAM",

46 }}

Listing 3: An example GPU Interface entry which is used to monitor GPU devices on the system and
profile kernel executions.

4 the mechanics of supertwin

SuperTwin is designed to run on a host that can be different than the target system. The
host runs the SuperTwin daemon as well as the tools with heavy workloads, e.g., InfluxDB,
MongoDB, and Grafana. The target only runs the PCP samplers and reports telemetry to the host
when requested. In Figure 4, step 0 reads the environment variables such as the IP addresses
of InfluxDB and MongoDB instances and Grafana token to the SuperTwin daemon. In step
1 , the probing module is copied to the target system to generate a JSON file containing the
system information which, in 2 , is copied back to the host to generate the KB. The information
collected from all the tools, components, and third-party tools SuperTwin manages is fused
for KB generation. Once the KB is generated, it is inserted into MongoDB in step 3 . Step 3

re-occurs every time KB changes or SuperTwin is restarted. When this phase is completed, the

SparCity 13

framework becomes fully functional using only this data structure.
In Figure 4, two SuperTwin scenarios are shown; the first is sampling software emitted

metrics to monitor system state (Scenario A), and the other is capturing the hardware performance
events during kernel execution. In step A1 , using KB, SuperTwin configures the PCP collectors
and samples system-related metrics, such as CPU and memory usage, NUMA-related events, and
energy spent. In A3 , a sampler on the target is requested for this telemetry. Since the query

parameters are already encoded in KB, steps A1 and A2 can happen at the same time. That is the
dashboards are already generated on the host when the target starts reporting.

Figure 4 Two scenarios within the SuperTwin framework

In Scenario B, SuperTwin samples hardware events reported from the PMUs. In this case,
it focuses on an execution on the target and the components on which the execution takes place.
Therefore, SuperTwin requests an executable and its command-line parameters. Once these are
provided, the PMUs are configured to report the requested metrics in step B1 . That is SuperTwin

configures the sampler in the same way as step A1 . After the PMUs are configured, it generates a
script to run the requested kernel on the target system. This script bounds the threads to the cores
using one of the balanced, compact, numa balanced, numa compact strategies based on the probed
target system topology. Then it samples performance events, executes the script to run a kernel on
a target and stops the sampling as the kernel is halted. An ObservationInterface is generated
to encode the execution metadata, collected metrics and the unique observation ID associated
with the time-series data in InfluxDB. In step B8 , the ObservationInterface is appended to the
system’s KB. This ObservationInterface entry is later used to recall the performance data for
visualization or analysis purposes.

4.1 abstraction layer

To perform its actions and to effectively monitor PMU events on diverse target systems, each
hosting CPUs across various vendors and micro-architectures, SuperTwin leverages an Abstrac-
tion Layer. The monitoring units and their reported events can significantly vary among different
micro-architectures and from vendor to vendor. For instance, Intel has four general-purpose pro-
grammable counters/per-core to count performance events (eight if is not shared with a second
thread in the core), whereas AMD has two internal counters, one for each sampling flag. Intel
provides 62 sub-events corresponding to 12 events, each accompanied by mask values. Similarly,
AMD offers support for events similar to Intel. As an example, similarities and differences of

SparCity 14

events for Intel Cascade and AMD Zen3 are listed in Table 1. A detailed comparison between
Intel and AMD PMUs can be found in.29

Event Intel Cascade AMD Zen3

Energy
RAPL ENERGY PKG
RAPL ENERGY DRAM

RAPL ENERGY PKG
RAPL ENERGY DRAM

Retired Inst. INSTRUCTIONS RETIRED RETIRED INSTRUCTIONS

Tot. Mem. Op.
MEM INST RETIRED:ALL LOADS +
MEM INST RETIRED:ALL STORES

LS DISPATCH:STORE DISPATCH+
LS DISPATCH:LD DISPATCH

L3 Hit Not Supported LONGEST LAT CACHE:MISS +
LONGEST LAT CACHE:RETIRED

Table 1 Intel vs. AMD PMU events: the same, similar, different, and exclusive event names for the same
generic event, respectively.

To facilitate the monitoring of PMU events in a platform-agnostic manner, an abstraction layer
is implemented for SuperTwin. This layer effectively maps generic event names to concealed
hardware-specific PMU event names, enhancing the system’s versatility and ease of use. We have
established a set of common events, such as L1 CACHE DATA MISS, FP DIV RETIRED, and
RAPL ENERGY PKG, that are assumed to be supported by all the commodity CPUs. The rest of the
events are left to the user’s discretion. For further flexibility and scalability, SuperTwin utilizes
configuration files to establish a straightforward mapping of common events to corresponding
hardware events. The structure of a configuration file is as follows:

[pmu_name | alias]

<generic_event>:<hardware_event_1> [op]

[op] : ((+|-|*|/)(<hw_event> | <const>)) [op]

Following the pattern delineated, it is possible to generate a configuration file for “any” hardware
by specifying the events intended for monitoring. Upon registering the desired configuration files
within SuperTwin, the application proceeds to configure the PCP of the target system using the
registered configuration files when needed. Additionally, users can access event information in
a CPU agnostic manner within the program using pmu util.get(...) method. An example is
given below;

>pmu_utils.get(HW_PMU_NAME, COMMON_EVENT_NAME)

>pmu_utils.get("skl", "TOTAL_MEMORY_OPERATIONS")

>[

"MEM_INST_RETIRED:ALL_LOADS",

"+",

"MEM_INST_RETIRED:ALL_STORES"

]

Although this example belongs to the Intel CPU outlined in Table 2, SuperTwin’s configuration
mapping via its abstraction layer offers versatility. Users can create mapping files for a wide
range of CPUs, including Intel, AMD, PowerPC, ARM, and others, as long as they are supported
by the libpfm4 library which is the core library that enables PCP to monitor PMU events in CPUs.
As SuperTwin configures PCP on the target, it creates empty and zero-overhead dashboards

29Muhammad Aditya Sasongko et al. “Precise Event Sampling on AMD Versus Intel: Quantitative and Qualitative
Comparison”. IEEE Transactions on Parallel and Distributed Systems 34.5 (2023), pp. 1594–1608. issn: 1558-2183. doi:
10.1109/TPDS.2023.3257105.

SparCity 15

https://doi.org/10.1109/TPDS.2023.3257105

on Grafana, which are simply JSON files. Last, but not least, the abstraction layer seamlessly
generates the formulas for the events the user is interested in. This changes from vendor to
vendor as well as for every architecture even when the events are the same. An abstraction layer
is necessary in modern tools to handle this diversity for performance profiling. An illustrative
use case is presented in Section 5.4.

4.2 cache-aware roofline model in supertwin

4.2.1 model construction

For an intuitive visualization framework, SuperTwin supports the construction of a tailored
CARM model for Intel and AMD microarchitectures. It is enriched with a set of custom micro-
benchmarks in x86 assembly, designed to experimentally assess the realistically attainable max-
imum performance of a given system, i.e., the sustainable bandwidth for different levels of
memory hierarchy and the peak throughput of computational units.

In order to assess the different metrics necessary to construct the CARM roofs, such as band-
width and peak flops, we rely on the Time Stamp Counter (TSC) to measure the number of clock
cycles elapsed, detection of CPU operating frequency, and predefined amount of memory and
compute operations contained in a specific microbenchmark executed. The microbenchmarks
support various instruction set architecture (ISA) extensions, including scalar, SSE, AVX2 and
AVX512, along with multithreaded measurements. This allows for further customization of Su-
perTwin’s CARM plot based on the prevalent ISA extension or a specific thread count utilized
in the tested applications.

Thanks to Knowledge Base, CARM microbenchmarks are automatically configured for a target
system, taking into account cache sizes and available ISAs. To reduce the overheads associated
with extensive benchmarking of all possible combinations of thread counts, SuperTwin gener-
ates a subset of the most representative thread counts for the microbenchmark executions. Finally,
the KB is also used to store all the microbenchmarking results for each tested system, thus allow-
ing for a re-construction of the CARM plot without the need to re-run all the microbenchmarks.

4.2.2 application characterization

Besides the construction of a CARM plot for a target system, SuperTwin also provides the
CARM-based visualization of the application execution progress at run-time (live monitoring
feature). This functionality is achieved by automatically configuring PMU events based on the
underlying architecture of a system, in order to accurately calculate the live Arithmetic Intensity
(AI) and live-GFLOPS of the system. These PMU-based metrics are sampled on a time-stamp
basis and used to plot the application points in real time on the generated CARM for the target
system. This generated panel is referred to in the framework as the live-CARM panel, which
offers a unique feature of SuperTwin by delivering real-time feedback on a target system’s
utilization relative to architectural constraints determined by the already constructed CARM. This
dynamic functionality is achieved through the formulation of specialized expressions based on
hardware events, enabling the calculation of GFLOPS and Arithmetic Intensity (AI) tailored to
diverse Intel and AMD microarchitectures.

The amount of GFLOPS is determined by mapping and adding all of the available floating-
point operation events of the target system, using the PMU remapping capabilities of SuperTwin.
As for the AI, this metric requires the already calculated GFLOPS, as well as the total amount of
memory bytes transferred to/from the processing cores, which calculation varies across different
generations of Intel and AMD systems. In general, they are inferred from the ratios of different

SparCity 16

floating point instructions (scalar, SSE, AVX2, AVX512), which are applied to the total amount of
store and load events measured in the target system.

The live-CARM panel also automatically retrieves the micro-benchmarking results (to con-
struct the CARM plot of the target system) from the Knowledge Base. By tightly coupling the
application’s live metrics with the CARM plot in the SuperTwin panel, we facilitate the observa-
tion of the relative performance of an application in real-time, when compared to the theoretical
limits of the architecture it is running on. Furthermore, SuperTwin auto-generates graphs for
any hardware metric configured by the user, which display the values of selected metrics for the
different cores of the target machine, including a cumulative sum of the events across all cores.

5 experimental results

In the host system, we used Grafana v9.4.7, InfluxDB 1.8, MongoDB 6.0.6. For micro-benchmarks,
we used likwid-bench v5.2.2. Specifications of the target systems used in the experimental setting
are presented in Table 2.

SKX ICL

OS Ubuntu 20.04.3 LTS x86 64 OS Linux Mint 21.1 x86 64

Kernel 5.15.0-73-generic Kernel 5.15.0-56-generic
CPU Intel Xeon Gold 6152 @3.7GHz x2 (44c/88t) CPU Intel i9-11900K @5.1GHz (8c/16t)
Arch Skylake X Arch Ice Lake
Mem 1TB DDR4 @ 2666MHz Mem 64GB DDR4 @ 2133MHz
Env. pcp 5.3.6-1 Env. pcp 5.3.6-1

CSL ZEN3

OS CentOS Linux release 7.9.2009 (Core) x86 64 OS Ubuntu 22.04.3 LTS x86 64

Kernel 3.10.0-1160.90.1.el7.x86 64 Kernel 6.2.0-33-generic
CPU Intel Xeon Gold 6258R @2.7GHz (28c/56t) CPU AMD EPYC 7313 @3GHz (16c/32t)
Arch Cascade Lake Arch Zen3

Mem 64GB DDR4 @ 3200 MHz Mem 128GB DDR4 @ 2933 MHz
Env. pcp 6.1.0-1 Env. pcp 5.3.6-1

Table 2 Specifications of platforms used in the experiments.

5.1 throughput and accuracy

PCP performs sampling instead of recording performance events over time and reports the sum
at the end. There is no buffer or queue mechanism to keep data points until their insertion
into the DB. This theoretically can cause losses in data points, especially with high-frequency
samplings if the DB insertion time is slower than the sampling time. Moreover, the sampled
metrics are reported over a network, which presents another bottleneck to database throughput.
We performed throughput experiments with high-frequency samplings using PCP and InfluxDB
to ensure that sampled data points do not suffer heavy losses while they are inserted into the DB
and determine an ideal sampling frequency to set for our framework.

Table 3 shows the throughput achieved with pmdaperfevent. Instead of sampling and re-
porting of operating system files, pmda perfevent samples PMUs, which may represent another
limiting factor for reaching maximum throughput in high frequencies. As expected, we observed
significant variation in losses. Besides the missing values, we also observed batched zero values
in our DB when the frequency was high. Therefore, we also count the number of zeros inserted

SparCity 17

Host Freq. #mt Expected Inserted Zeros %L %L+Z Tput A.Tput

2 4 7.04E+03 6.62E+03 0.00E+00 6.0 6.0 661.8 661.8
2 5 8.80E+03 8.71E+03 0.00E+00 1.0 1.0 871.2 871.2
2 6 1.06E+04 1.06E+04 0.00E+00 0.0 0.0 1056.0 1056.0

8 4 2.82E+04 2.60E+04 5.84E+02 7.8 9.8 2597.8 2539.4
8 5 3.52E+04 3.42E+04 7.72E+01 2.8 3.0 3423.2 3415.5
8 6 4.22E+04 4.22E+04 0.00E+00 0.0 0.0 4224.0 4224.0

32 4 1.13E+05 6.97E+04 3.04E+04 38.1 65.1 6969.6 3927.9
32 5 1.41E+05 1.14E+05 5.32E+04 19.4 57.2 11352.0 6030.3

skx

32 6 1.69E+05 1.20E+05 5.02E+04 28.8 58.5 12027.8 7012.1

Host Freq. #mt Expected Inserted Zeros %L %L+Z Tput A.Tput

2 4 1.28E+03 1.25E+03 0.00E+00 2.0 2.0 125.4 125.4
2 5 1.60E+03 1.60E+03 0.00E+00 0.0 0.0 160.0 160.0
2 6 1.92E+03 1.92E+03 0.00E+00 0.0 0.0 192.0 192.0

8 4 5.12E+03 4.97E+03 0.00E+00 3.0 3.0 496.6 496.6
8 5 6.40E+03 6.22E+03 0.00E+00 2.8 2.8 622.4 622.4
8 6 7.68E+03 7.68E+03 0.00E+00 0.0 0.0 768.0 768.0

32 4 2.05E+04 2.00E+04 7.26E+03 2.2 37.6 2003.2 1277.6
32 5 2.56E+04 2.50E+04 8.78E+03 2.4 36.7 2499.2 1621.2

icl

32 6 3.07E+04 3.00E+04 1.04E+04 2.3 36.0 3002.9 1965.9

Table 3 Number of data points expected and observed at the host DB w.r.t. #metrics and sampling frequency.
(A.) Tput inserted (actual) data points per second; L%+Z ratio of false zeros subtracted from inserted values to
the expected value.

into the DB. With perfevent, we sampled metrics that are highly unlikely to report zero, e.g.,
UNHALTED CORE CYCLES, INSTRUCTION RETIRED, UOPS DISPATCHED etc. Although, losses with rela-
tively low frequencies are negligible, more than half of the data points are lost in transmission
on skx and a third of data points are lost on icl. This is due to the correlation between the loss
amount and the size of the domain; skx has 88 threads, therefore there are 88 data points in each
report while this number is 16 for icl.

To verify the accuracy of PCP’s perf readings while generating our performance models, we
used likwid-bench,30 which executes a pre-determined, fixed number of instruction streams
and can report ground truth for performance events that took place afterwards. We executed
kernels sum, stream, triad, peakflops, ddot, daxpy with SuperTwin while sampling perfor-
mance, later parsed output of the likwid-bench kernels and compared with our readings. The
relative errors acquired w.r.t. averaged kernel errors for different frequencies are reported in
Figure 5 (positive and negative values represent overcounting and undercounting, respectively).
The data volume (in bytes) is calculated as (MEM UOPS:LOADS + MEM UOPS:STORES) × 8 on zen3

and (MEM INST RETIRED:LOADS + MEM INST RETIRED:STORES) on skx and icl. The #FLOPS is
calculated as RETIRED SSE AVX FLOPS: ANY on zen3 and FP ARITH:SCALAR DOUBLE on icl and

30Thomas Röhl et al. “Overhead Analysis of Performance Counter Measurements”. 2014 43rd International Conference
on Parallel Processing Workshops. 2014, pp. 176–185. doi: 10.1109/ICPPW.2014.34.

SparCity 18

https://doi.org/10.1109/ICPPW.2014.34

Figure 5 Relative errors between sampled metrics and likwid-bench reported values.

skx. We found that the measurements are accurate enough to profile executions and generate
coherent performance models (e.g., live-CARM). The increased error rates may be due to losses
in transmission, or the inherent noise in PMUs.31

5.2 resource usage of supertwin

PCP employs multiple agents for metric shipment operations, and as the number of metrics and
resolutions increase, remote system resource usage becomes a concern. We measured CPU and
memory usage of individual PCP agents for various metric and sampling configurations on a
high-capacity server (skx) with 2 sockets, 88 threads, 1 TB of RAM, and 4 disks. We conducted
measurements over 10 minutes on an empty target system and averaged the results. Figure 6

shows results for sampling 50 metrics, comprising 15,937 data points at varying frequencies. The
I/O use of PCP agents was negligible (< 1 KB) and excluded from the results. The host system
had a 100Mbit cabled connection with the target system, whereas the disk performance was
measured at 182 KB/s and 1.2 MB/s for 512B and 8K block-sized writes, respectively.

The PCP agents include pmcd, which manages other agents and reports their readings;

31Vincent Weaver, Dan Terpstra, and Shirley Moore. “Non-determinism and overcount on modern hardware
performance counter implementations”. 2013, pp. 215–224. doi: 10.1109/ISPASS.2013.6557172.

SparCity 19

https://doi.org/10.1109/ISPASS.2013.6557172

Figure 6 System resource usage of metric shipment with kernel and PMU metrics on skx.

perfevent, which samples PMU readings via Linux perf interface; pmdalinux, reporting software-
sourced system state metrics like memory usage; and pmdaproc, which reports per-process met-
rics like I/O and memory usage. CPU usage measurements use the proc.psinfo.utime and
proc.psinfo.stime, whereas memory measurements use the proc.psinfo.rss metric. Notably,
regardless of the reported metrics or sampling frequency, all agents maintain constant memory
usage. pmdaproc uses more memory due to a larger instance domain. Except for pmdaproc, all
agents are efficient in resource usage. Overall, SuperTwin employs 0 per-process metrics and
uses approximately 20 pmdalinux metrics, and 2 pmdaperfevent metrics at 1-second intervals.

CPU and network usage scale linearly with increased sampling frequency, showing consistent
resource usage without deviations as seen in the error bars. However, one case in Figure 6

SparCity 20

Figure 7 Overhead caused by profiling six likwid-bench kernels (executions repeated 5 times, the run-times
averaged).

Figure 8 Monitoring live performance events during SpMV execution on Intel CSL system

reveals that the PCP framework does not scale perfectly for 4 and 8 reports per second, with
varying network traffic. This behavior is observed in other skx measurements except for 10

metrics. The under-utilization of the network and CPU suggests that the framework may stall

SparCity 21

and fail to sample and report metrics as desired due to a lack of buffering and resending missing
metrics. High-frequency sampling exacerbates this issue, leading to outdated or lost metrics
during transmission, consistent with previous observations.

5.3 time overhead

During the hardware performance event samplings, both PCP run on the target system and per-
formance monitoring registers are sampled. Therefore kernel run-time may be affected negatively.
To measure the effect of sampling on a target system, we ran the same micro-benchmarks from
previous tests with and without sampling and measured the change in their completion times.
The overhead caused by sampling can be seen in Figure 7. Surprisingly, negative overheads are
observed, which we explain as overhead added by sampling is smaller than the variance observed
between different runs of the same kernel. This is understandable since the positive overheads
are also measured at 0.01%. A similar negative overhead is also reported by32 even in a much
bigger distributed setting. However, a meaningful skew towards positive overhead is observed
with increasing frequency.

5.4 monitoring live performance events

To showcase the live monitoring capabilities of SuperTwin, we execute two state-of-the-art al-
gorithms for Sparse Matrix Vector Multiplication (SpMV), i.e., Intel MKL33 and Merge,34 on the
Intel CSL system presented in Table 2. We selected five sparse matrices from the SuiteSparse
collection,35 as presented in Table 4, which cover a range of matrices from different scientific
domains, characteristics, dimensions, and number of non-zero elements. Both SpMV algorithms
are performed on the original (unaltered) matrices, as well as on their reordered versions using
Reverse Cuthill-McKee (RCM).36 For each combination of the sparse matrices, algorithms and
reordering, the performance data is collected at runtime.

The obtained results are presented in Figure 8, when running the original (top part) and
RCM-reordered (bottom part) matrices, and by subjecting each sparse matrix to the Intel MKL,
followed by the Merge SpMV algorithm. For all cases, a set of PMU events were collected,
these include SCALAR DOUBLE INSTRUCTIONS, AVX512 DOUBLE INSTR., TOTAL MEMORY INSTR., and
RAPL POWER PACKAGE, with their evolution during the algorithm execution is depicted in Figure 8.
As can be observed, there is a noticeable difference in the overall execution time required to
process all five original (top) and reordered (bottom) matrices, where the reordered ones took
about 22% less time for processing. This effect indicates the positive influence of reordering on
improved data locality, which subsequently results in substantial performance improvements.

By focusing on the evolution of collected PMU events presented in Figure 8, one can observe
that the AVX512 DP FP events are only manifested during the Intel MKL execution, while the
SCALAR DP FP appear during the Merge algorithm runs. This is due to the ability of MKL SpMV
implementation to take advantage of the Intel CPU’s AVX512 capabilities, while Merge SpMV only

32Andrzej Nowak and Georgios Bitzes. The overhead of profiling using PMU hardware counters. 2014. doi: 10.5281/
zenodo.10800. url: https://doi.org/10.5281/zenodo.10800.

33Endong Wang et al. “Intel Math Kernel Library”. High-Performance Computing on the Intel® Xeon Phi™: How to Fully
Exploit MIC Architectures. Springer International Publishing, 2014, pp. 167–188. doi: 10.1007/978-3-319-06486-4_7.
url: https://doi.org/10.1007/978-3-319-06486-4_7.

34Duane Merrill and Michael Garland. “Merge-based sparse matrix-vector multiplication (spmv) using the csr
storage format”. Acm Sigplan Notices 51.8 (2016), pp. 1–2.

35Tim Davis. Sparse Matrix Collection. Accessed on 5th October 2023. url: https://sparse.tamu.edu/.
36Elizabeth Cuthill and James McKee. “Reducing the bandwidth of sparse symmetric matrices”. Proceedings of the

1969 24th national conference. 1969, pp. 157–172.

SparCity 22

https://doi.org/10.5281/zenodo.10800
https://doi.org/10.5281/zenodo.10800
https://doi.org/10.5281/zenodo.10800
https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1007/978-3-319-06486-4_7
https://sparse.tamu.edu/

Name Group Rows Cols Nnz
adaptive DIMACS10 6,815,744 6,815,744 27,2M
audikw 1 GHS psdef 943,695 943,695 77,7M
dielFilterV3real Dziekonski 1,102,824 1,102,824 89,3M
hugetrace-00020 DIMACS10 16,002,413 16,002,413 48,0M
human gene1 Belcastro 22,283 22,283 24,7M

Table 4 Sparse matrices used in the experiment.

exercised the scalar units (note the drop in AVX512 and the increase in scalar FP instructions at the
vertical dashed lines, i.e., the points in time when MKL finishes and Merge starts its execution).

We can also observe that during the MKL execution, the measures for RAPL POWER PACKAGE

and TOTAL MEMORY INSTRUCTIONS are lower than for Merge. This corroborates the fact that the
codes using higher SIMD ISA may provoke reduced instruction counts when compared to their
scalar counterparts (e.g., AVX512 load/store instructions involve 64-byte data transfer versus
scalar memory instructions that operate on 8 bytes of data). This phenomenon, as well as data lo-
cality in different memory levels achieved with different algorithms and reordering, can provoke
significant power consumption variations, as shown in Fig. 8.

5.5 live-carm feature

To showcase the live-CARM feature in SuperTwin, we further analyze the performance differ-
ences between MKL and Merge SpMV algorithms, as well as three likwid benchmarks on the Intel
CSL system (see Table 2).

SpMV Execution Profiling Figure 9 presents the live-CARM panel during the execution of both
Intel MKL SpMV and Merge SpMV for the hugetrace-00020 (see Table 4) in its original and
RCM-reordered form. The live-CARM timestamps belonging to each execution phase are identi-
fied by the colored square that contains them, namely: pink square – Intel MKL; and orange square
– Merge execution, while for both algorithms the blue and green squares denote the executions
corresponding to the original and RCM-reordered matrix, respectively. As can be observed in
the CARM plot, for each algorithm, the RCM reordering yielded higher performance, while we
can also observe that the Intel MKL SpMV provides higher performance than the Merge SpMV
(mainly due to its ability to exploit AVX512 SIMD capability). Furthermore, this study showcases
how the Live-CARM dashboard can be used to make intuitive and insightful performance anal-
yses across different applications and their execution phases during the run-time, as it allows
pinpointing the data locality in different memory levels.

Benchmark Execution Profiling Live-CARM can also be used to profile benchmarks, by directly
comparing the execution of a benchmark against the live-CARM roofs, i.e., the performance
upper-bounds attainable on a target platform for different memory levels and compute units.
This analysis provides a general idea on the ability of executed applications to fully exploit the
capabilities of underlying hardware resources. For this purpose, various benchmarks from the
likwid tool37 (Triad, PeakFlops, and DDOT) were considered, with corresponding live-CARM
reports presented in Figure 10.

The Triad benchmark (see orange points enclosed with green box) is a memory-bound bench-
mark with a theoretical AI of 0.625, which is accurately captured by the live-CARM in Fig. 10.
As can be seen, the performance of this kernel approaches the L2 roof, but it is unable to surpass

37Röhl et al., “Overhead Analysis of Performance Counter Measurements”.

SparCity 23

Figure 9 Live-CARM during SpMV execution

Figure 10 Live-CARM during Likwid benchmarks execution

it since the workload size does not fit in the 32Kb L1 cache. The PeakGflops benchmark (red dots
enclosed with the dark blue box) is designed to reach the peak FP performance. With a theoretical
AI of 2, this benchmark reports a performance very close to the one obtained with the CARM
microbenchmarks (the application points aligned with the horizontal live-CARM roof in Fig. 10).
Finally, similarly to Triad, the DDOT benchmark, is a memory-bound kernel that utilizes smaller

SparCity 24

problem sizes, thus able to fit in the L1 cache. As presented in Fig. 10 (see red dots with a light
blue box), the theoretical DDOT AI of 0.125 is accurately captured by the live-CARM, with the per-
formance surpassing the L2 roof, and approaching the maximum performance of the architecture.

6 conclusion and future work

In this deliverable, we present SuperTwin with an HPC-specific ontology, a knowledge base
created on this ontology and proposed methods to parse the KB to detect performance varia-
tions/degradations in HPC environments. We demonstrated its lightweight remote performance
profiling capabilities and presented its accuracy in the presence of transmission losses on high-
frequency data over the network. Furthermore, it is equipped with the tools to compare per-
formance metrics obtained from different systems which enables a heterogeneous performance
analysis environment.

Overall, with SuperTwin, we aim to enhance the performance analysis and explainability
landscape in multi-core architectures and facilitate architectural research. Future endeavours
include gathering data from various systems and utilizing the dataset collected via SuPerfDB,
the global performance database, for LLM training and building an AI tool for performance
optimization. The design, as outlined in the deliverable, enables a straightforward extension
of the framework from single-node servers to clusters. Based on the proposed design in this
deliverable, we are on the verge of developing a cluster-level SuperTwin that encapsulates
meticulous performance analysis and monitoring capabilities, in conjunction with communication
telemetry and job-specific metadata emitted from HPC clusters.

7 contributions by each partner

SU, KU, and INESC-ID contributed to the design and implementation of SuperTwin, its compo-
nents, API and documentation. Overall, the detailed design is a product of equal contributions
by three partners. SU implemented the main components of the performance database.

8 deviations (if any)
There are no deviations.

SparCity 25

references

Adhianto. “HPCTOOLKIT: Tools for Performance Analysis of Optimized Parallel Programs
Http://Hpctoolkit.Org”. Concurr. Comput.: Pract. Exper. 22.6 (2010), pp. 685–701. issn: 1532-
0626.

Agelastos. The Lightweight Distributed Metric Service: A Scalable Infrastructure for Continuous Moni-
toring of Large Scale Computing Systems and Applications. English. Tech. rep. SAND2014-19868C.
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab.
(SNL-CA), Livermore, CA (United States), 2014. doi: 10.1109/SC.2014.18. url: https:
//www.osti.gov/biblio/1315267 (visited on 09/27/2021).

Aksar. “E2EWatch: An End-to-End Anomaly Diagnosis Framework for Production HPC Sys-
tems””. Euro-Par 2021: Parallel Processing. Springer International Publishing, 2021, pp. 70–85.

Brandt. Lightweight Distributed Metric Service (LDMS): Run-time Resource Utilization Monitoring.
English. Tech. rep. SAND2013-6521C. Sandia National Lab. (SNL-CA), Livermore, CA (United
States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States), 2013. url: https:
//www.osti.gov/biblio/1106397 (visited on 09/27/2021).

Chen, Xiaoli. “CERN Analysis Preservation: A Novel Digital Library Service to Enable Reusable
and Reproducible Research”. Research and Advanced Technology for Digital Libraries. Springer
International Publishing, 2016, pp. 347–356.

Choi, Jee Whan et al. “A roofline model of energy”. 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing. IEEE. 2013, pp. 661–672.

Cluster Cockpit. https://www.clustercockpit.org/. Accessed on 30 Sep 2023.
Cuthill, Elizabeth and James McKee. “Reducing the bandwidth of sparse symmetric matrices”.

Proceedings of the 1969 24th national conference. 1969, pp. 157–172.
Davis, Tim. Sparse Matrix Collection. Accessed on 5th October 2023. url: https://sparse.tamu.

edu/.
Deng. “A systematic review of a digital twin city: A new pattern of urban governance toward

smart cities”. Journal of Management Science and Engineering 6.2 (2021), pp. 125–134. issn:
2096-2320. doi: https://doi.org/10.1016/j.jmse.2021.03.003.

Ding, Nan and Samuel Williams. “An Instruction Roofline Model for GPUs”. 2019 IEEE/ACM Per-
formance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS).
2019, pp. 7–18. doi: 10.1109/PMBS49563.2019.00007.

Doerfler, Douglas et al. “Applying the roofline performance model to the intel xeon phi knights
landing processor”. High Performance Computing: ISC High Performance 2016 International Work-
shops, ExaComm, E-MuCoCoS, HPC-IODC, IXPUG, IWOPH, Pˆ 3MA, VHPC, WOPSSS, Frankfurt,
Germany, June 19–23, 2016, Revised Selected Papers 31. Springer. 2016, pp. 339–353.

Dongarra, Jack and Michael A Heroux. “Toward a new metric for ranking high performance
computing systems”. Sandia Report, SAND2013-4744 312 (2013), p. 150.

Friedemann. “Linked Data Architecture for Assistance and Traceability in Smart Manufacturing”.
MATEC Web of Conferences 304 (2019), p. 04006. doi: 10.1051/matecconf/201930404006.

Ganglia. Monitoring system. 2022. url: http://ganglia.sourceforge.net/ (visited on 12/12/2022).
Ilic, Aleksandar, Frederico Pratas, and Leonel Sousa. “Beyond the roofline: Cache-aware power

and energy-efficiency modeling for multi-cores”. IEEE Transactions on Computers 66.1 (2016),
pp. 52–58.

— “Cache-aware roofline model: Upgrading the loft”. IEEE Computer Architecture Letters 13.1
(2013), pp. 21–24.

SparCity 26

https://doi.org/10.1109/SC.2014.18
https://www.osti.gov/biblio/1315267
https://www.osti.gov/biblio/1315267
https://www.osti.gov/biblio/1106397
https://www.osti.gov/biblio/1106397
https://www.clustercockpit.org/
https://sparse.tamu.edu/
https://sparse.tamu.edu/
https://doi.org/https://doi.org/10.1016/j.jmse.2021.03.003
https://doi.org/10.1109/PMBS49563.2019.00007
https://doi.org/10.1051/matecconf/201930404006
http://ganglia.sourceforge.net/

Koskela, Tuomas et al. “A novel multi-level integrated roofline model approach for performance
characterization”. High Performance Computing: 33rd International Conference, ISC High Perfor-
mance 2018, Frankfurt, Germany, June 24-28, 2018, Proceedings 33. Springer. 2018, pp. 226–245.

Lu, Qiuchen et al. “Developing a dynamic digital twin at building and city levels: A case study of
the West Cambridge campus”. Journal of Management in Engineering 36 (2019). doi: 10.1061/
(ASCE)ME.1943-5479.0000763.

Marques, Diogo et al. “Application-driven cache-aware roofline model”. Future Generation Com-
puter Systems 107 (2020), pp. 257–273.

McCalpin, John. “Memory bandwidth and machine balance in high performance computers”.
IEEE Technical Committee on Computer Architecture Newsletter (1995), pp. 19–25.

Merrill, Duane and Michael Garland. “Merge-based sparse matrix-vector multiplication (spmv)
using the csr storage format”. Acm Sigplan Notices 51.8 (2016), pp. 1–2.

Milenković, Katarina. “Enabling Knowledge Management in Complex Industrial Processes Using
Semantic Web Technology”. English. Proceedings of the 2019 International Conference on The-
ory and Applications in the Knowledge Economy. 2019 International Conference on Theory and
Applications in the Knowledge Economy, TAKE 2019 ; Conference date: 03-07-2019 Through
05-01-2020. 2019. url: https://www.take-conference2019.com/.

Nagios. Nagios. https://www.nagios.org/. Accessed: 2022-12-12. 2022.
Nowak, Andrzej and Georgios Bitzes. The overhead of profiling using PMU hardware counters. 2014.

doi: 10.5281/zenodo.10800. url: https://doi.org/10.5281/zenodo.10800.
Performance Co-Pilot. https://pcp.io/. Accessed on 30 Sep 2023.
Röhl, Thomas et al. “LIKWID Monitoring Stack: A Flexible Framework Enabling Job Specific Per-

formance monitoring for the masses”. 2017 IEEE International Conference on Cluster Computing
(CLUSTER). 2017, pp. 781–784. doi: 10.1109/CLUSTER.2017.115.

Röhl, Thomas et al. “Overhead Analysis of Performance Counter Measurements”. 2014 43rd
International Conference on Parallel Processing Workshops. 2014, pp. 176–185. doi: 10.1109/
ICPPW.2014.34.

Roy. “PerfAugur: Robust diagnostics for performance anomalies in cloud services”. 2015 IEEE
31st International Conference on Data Engineering. 2015, pp. 1167–1178. doi: 10.1109/ICDE.
2015.7113365.

Sasongko, Muhammad Aditya et al. “Precise Event Sampling on AMD Versus Intel: Quantitative
and Qualitative Comparison”. IEEE Transactions on Parallel and Distributed Systems 34.5 (2023),
pp. 1594–1608. issn: 1558-2183. doi: 10.1109/TPDS.2023.3257105.

Steinmetz. “Internet of Things Ontology for Digital Twin in Cyber Physical Systems”. 2018
VIII Brazilian Symposium on Computing Systems Engineering (SBESC). 2018, pp. 154–159. doi:
10.1109/SBESC.2018.00030.

Team, The Smartmontools. Smartmontools. Accessed on 5th October 2023. url: https://www.
smartmontools.org/.

Unat, Didem et al. “ExaSAT: An exascale co-design tool for performance modeling”. The In-
ternational Journal of High Performance Computing Applications 29.2 (2015), pp. 209–232. doi:
10.1177/1094342014568690. url: https://doi.org/10.1177/1094342014568690.

Wang, Endong et al. “Intel Math Kernel Library”. High-Performance Computing on the Intel® Xeon
Phi™: How to Fully Exploit MIC Architectures. Springer International Publishing, 2014, pp. 167–
188. doi: 10.1007/978-3-319-06486-4_7. url: https://doi.org/10.1007/978-3-319-
06486-4_7.

Weaver, Vincent, Dan Terpstra, and Shirley Moore. “Non-determinism and overcount on modern
hardware performance counter implementations”. 2013, pp. 215–224. doi: 10.1109/ISPASS.
2013.6557172.

SparCity 27

https://doi.org/10.1061/(ASCE)ME.1943-5479.0000763
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000763
https://www.take-conference2019.com/
https://www.nagios.org/
https://doi.org/10.5281/zenodo.10800
https://doi.org/10.5281/zenodo.10800
https://pcp.io/
https://doi.org/10.1109/CLUSTER.2017.115
https://doi.org/10.1109/ICPPW.2014.34
https://doi.org/10.1109/ICPPW.2014.34
https://doi.org/10.1109/ICDE.2015.7113365
https://doi.org/10.1109/ICDE.2015.7113365
https://doi.org/10.1109/TPDS.2023.3257105
https://doi.org/10.1109/SBESC.2018.00030
https://www.smartmontools.org/
https://www.smartmontools.org/
https://doi.org/10.1177/1094342014568690
https://doi.org/10.1177/1094342014568690
https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1109/ISPASS.2013.6557172
https://doi.org/10.1109/ISPASS.2013.6557172

Weaver, Vincent M. et al. “Measuring Energy and Power with PAPI”. 2012 41st International
Conference on Parallel Processing Workshops. 2012, pp. 262–268. doi: 10.1109/ICPPW.2012.39.

Xin. “Cross-linking BioThings APIs through JSON-LD to facilitate knowledge exploration”. BMC
Bioinformatics 19 (2018). doi: 10.1186/s12859-018-2041-5.

appendix : api documentation

Due to the length of the API documentation, we are not including it in this document. You can
find the API documentation through https://people.sabanciuniv.edu/kaya/SuperTwin.pdf.

SparCity 28

https://doi.org/10.1109/ICPPW.2012.39
https://doi.org/10.1186/s12859-018-2041-5
https://people.sabanciuniv.edu/kaya/SuperTwin.pdf

8.1 history of changes

Version Author(s) Date Comment
0.1 Kamer Kaya 22.03.2024 Initial version
0.2 Kamer Kaya 25.03.2024 Major revisions in subsections
0.2.1 Aleksandar Ilic 26.03.2024 Minor revisions and proofreading
0.2.2 Didem Unat 27.03.2024 Minor revisions and proofreading

Table 5 Document History of Changes

SparCity 29

	Introduction
	Objectives of this Deliverable
	Work Performed
	Deviations and Counter Measures
	Resources

	SuperTwin and API
	SuperTwin: Digital Twins for HPC
	The Knowledge Base
	Adding Compute Devices to SuperTwin

	The Mechanics of SuperTwin
	Abstraction Layer
	Cache-aware Roofline Model in SuperTwin
	Model construction
	Application characterization

	Experimental Results
	Throughput and Accuracy
	Resource Usage of SuperTwin
	Time Overhead
	Monitoring Live Performance Events
	Live-CARM feature

	Conclusion and Future Work
	Contributions by Each Partner
	Deviations (if Any)
	History of Changes

