
Scientific evaluation report of the SparCity framework

Deliverable No: D5.3
Deliverable Title: Scientific evaluation report of the SparCity framework
Deliverable Publish Date: 31 March 2024

Project Title: SparCity: An Optimization and Co-design Framework for
Sparse Computation

Call ID: H2020-JTI-EuroHPC-2019-1
Project No: 956213

Project Duration: 36 months
Project Start Date: 1 April 2021

Contact: sparcity-project-group@ku.edu.tr

List of partners:

Participant no. Participant organisation name Short name Country
1 (Coordinator) Koç University KU Turkey
2 Sabancı University SU Turkey
3 Simula Research Laboratory AS Simula Norway
4 Instituto de Engenharia de Sistemas e Computadores, INESC-ID Portugal

Investigação e Desenvolvimento em Lisboa
5 Ludwig-Maximilians-Universität München LMU Germany
6 Graphcore AS* Graphcore Norway

*Until M21

i

contents

1 Introduction 1

1.1 Objectives of this deliverable 1

1.2 Work Performed 1

1.3 Deviations and Counter Measures 2

2 SparCity methods 3

2.1 ML-based recommendation methods 3

2.1.1 ML-based sparse matrix format selection 3

2.1.2 ML-based SpMV algorithm selection 3

2.1.3 ML-based sparse reordering performance prediction 4

2.1.4 Extended reordering performance experiments 7

2.2 Automated kernel fusion 11

2.2.1 Kernel Fusion Framework 12

2.2.2 Evaluation 17

2.2.3 Results 18

3 SparCity tools 21

3.1 Sparse-aware roofline modeling 21

3.2 A64FX cache partitioning profiler 26

3.3 SuperTwin 28

3.4 SparseViz 43

3.5 Sparse matrix/tensor generator 46

3.6 Partitioning utility API 46

4 SparCity libraries 50

4.1 SparseBase 50

4.1.1 Reordering 51

4.1.2 Partitioning 53

4.1.3 Feature Extraction 53

4.2 MPI communication offloading 55

4.2.1 Software Architecture 55

4.2.2 Microbenchmarks 56

4.2.3 Partitioned Communication 56

4.2.4 Sparse Computation Use Case 59

5 Conclusions 61

6 History of Changes 67

ii

1 introduction

The SparCity project is funded by EuroHPC JU (the European High Performance Computing
Joint Undertaking) under the 2019 call of Extreme Scale Computing and Data Driven Technologies
for research and innovation actions. SparCity aims to create a supercomputing framework
that will provide efficient algorithms and coherent tools specifically designed for maximizing
the performance and energy efficiency of sparse computations on emerging High Performance
Computing (HPC) systems, while also opening up new usage areas for sparse computations in
data analytics and deep learning.

Sparse computations are commonly found at the heart of many important applications, but
at the same time, it is challenging to achieve high performance when performing such sparse
computations. SparCity delivers a coherent collection of innovative algorithms and tools for en-
abling high efficiency of sparse computations on emerging hardware platforms. More specifically,
the objectives of the project are:

• to develop a comprehensive application and data characterization mechanism for sparse
computation based on the state-of-the-art analytical and machine-learning-based perfor-
mance and energy models,

• to develop advanced node-level static and dynamic code optimizations designed for mas-
sive and heterogeneous parallel architectures with complex memory hierarchy for sparse
computation,

• to devise topology-aware partitioning algorithms and communication optimizations to boost
the efficiency of system-level parallelism,

• to create digital SuperTwins of supercomputers to evaluate and simulate what-if hardware
scenarios,

• to demonstrate the effectiveness and usability of the SparCity framework by enhancing
the computing scale and energy efficiency of challenging real-life applications.

• to deliver a robust, well-supported and documented SparCity framework into the hands
of computational scientists, data analysts, and deep learning end-users from industry and
academia.

1.1 objectives of this deliverable

The main objective of Deliverable 5.3 is to provide a scientific evaluation of the software libraries,
tools, and methods of the SparCity framework, which have been developed or extended during
year 3 of the project. These will be evaluated with respect to the functionality and usability, as
well as accuracy when applicable. (The elements of the SparCity framework that were finalized
during the first two years of the project have already been evaluated in the preceding Deliverables
5.1 & 5.2. The evaluation of these will therefore not be repeated in this deliverable.)

1.2 work performed

The content of this deliverable is an evaluation of the scientific results from SparCity in three
categories: methods (Section 2), tools (Section 3), and libraries (Section 4). Each element in the three
categories will have a brief introduction, a summary of its functionality, and an evaluation of its
usability and accuracy (if relevant). The evaluation is typically carried out through real-world
examples of usage and effect.

SparCity 1

The five academic partners of SparCity (Koc, Sabanci, Simula, INESC-ID, and LMU) have
contributed substantially and collaboratively to the various elements. The industrial partner,
Graphcore, has contributed with technical support as well as frequent and in-depth discussions
with the other partners during the first 20 months of the project.

1.3 deviations and counter measures

There was no noteworthy deviation from the research plan that is related to the development and
application of the SparCity framework.

SparCity 2

2 sparcity methods

2.1 ml-based recommendation methods

Sparse matrix-vector multiplication (SpMV) is a key kernel in many applications from different
domains, and it often turns out to be a performance bottleneck for these applications. The
performance of an SpMV kernel varies widely among instances of the same size, because it
depends on several factors such as the sparsity pattern and the storage format for the matrix,
in addition to the architecture and memory hierarchy of the processor. This has given rise to
techniques that alleviate this problem by selecting the optimal storage formats, algorithms, and
reorderings for a given combination of input matrix and architecture.

2.1.1 ml-based sparse matrix format selection

Our early work has investigated the format selection problem.1 In contrast to existing work in
the area, we focused on the portability and explainability of the ML-based recommendations.
Our results indicate that ensemble learning techniques such as Random Forest or XGBoost yield
excellent accuracy, as well as portability of results. Transfer learning is highly effective here,
providing competitive accuracies with retraining times which are considerably less than that of
the original times. In contrast to earlier work, we found that approaches based on CNNs are less
viable when dealing with large instances. The features used in the ensemble learning approach
are order-invariant, which limits the applicability of this approach to other recommendation
problems.

2.1.2 ml-based spmv algorithm selection

For a given SpMV format, there are multiple different algorithms that have different advantages
and disadvantages depending on the instance. A key characteristic is the load-balancing strategy
for multicore processors. Here, we distinguish between 1D (row-based) and 2D (row- and column-
based) load balancings. While 1D algorithms are standard, sophisticated 2D algorithms only
recently became more common.2

We performed a large-scale comparison of the 1D and 2D algorithms using all larger instances
from the SuiteSparse collection.3 Since the number of instances in SuiteSparse is small, we
enhance the test set with 17 large matrices. We split the test set by the number of nonzeroes into
four groups: very small matrices having less than 10

6 nonzeroes, small with 10
6 to 10

7, medium with
10

7 to 10
8 nonzeroes, and large matrices having more than 100 million nonzeroes. Performance

results showed that especially processors with large core counts benefit from the 2D approach.
The experiment also included reorderings, which are discussed in the next subsection.

Note that the overhead of using the 2D algorithm is very small and can be amortized over
multiple runs. Therefore, using ML to predict the better algorithm, while possible, is unlikely to
improve the time to solution when repeated SpMV operations are performed.

1Sunidhi Dhandhania et al. “Explaining the Performance of Supervised and Semi-Supervised Methods for Au-
tomated Sparse Matrix Format Selection”. 50th International Conference on Parallel Processing Workshop. 2021, pp. 1–
10.

2Duane Merrill and Michael Garland. “Merge-Based Sparse Matrix-Vector Multiplication (SpMV) Using the CSR
Storage Format”. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. 2016.

3Scott P Kolodziej et al. “The suitesparse matrix collection website interface”. Journal of Open Source Software 4.35

(2019), p. 1244.

SparCity 3

Bringing Order to Sparsity: A Sparse Matrix
Reordering Study on Multicore CPUs

ABSTRACT
Many real-world computations involve sparse data struc-
tures in the form of sparse matrices. A common strategy
for optimizing sparse matrix operations is to reorder a ma-
trix to improve data locality. However, it’s not always clear
whether reordering will provide bene�ts over the unordered
matrix, as its e�ectiveness depends on several factors, such
as structural features of the matrix, the reordering algorithm
and the hardware that is used. This paper aims to establish
the relationship between matrix reordering algorithms and
the performance of sparse matrix operations. We thoroughly
evaluate six di�erent matrix reordering algorithms on 490
matrices across eight multicore architectures, focusing on the
commonly used sparse matrix-vector multiplication (SpMV)
kernel. We �nd that reordering based on graph partitioning
provides better SpMV performance than the alternatives for
a large majority of matrices, and that the resulting perfor-
mance is explained through a combination of data locality
and load balancing concerns.

1 INTRODUCTION
Sparse matrices arise from a wide variety of problems in sci-
enti�c computing, graph theory, �nance, and deep learning.
Sparse matrix reordering is an optimization technique used
to improve the e�ciency of operations on sparse matrices
by rearranging their rows and columns. Matrix reordering
serves many purposes. It can be used to achieve lower work
and storage requirements, improve data locality and cache
reuse, expose additional parallelism or improve the e�ective-
ness of other optimization techniques. Sparse direct solvers
rely heavily on appropriate ordering to reduce �ll-in dur-
ing factorization, whereas iterative solvers can bene�t from
reordering through improved data locality.

Various reordering algorithms [1, 4, 8, 9, 14, 19, 28] have
been proposed over the years. In the case of sparse direct
solvers, it is well known that the right ordering can drasti-
cally reduce the number of operations required to perform
factorisation [2]. For sparse matrix-vector multiplication
(SpMV), one of the most frequently encountered sparse ma-
trix operations, there are some examples of reordering being
used to signi�cantly improve performance (e.g., by a factor
of 3.6⇥ [28]). But most experimental evaluations are car-
ried out with only a small number of matrices and reveal
a mere 10 % improvement in SpMV performance for com-
monly used ordering strategies [15, 23, 24]. Reordering faces

Original RCM ND GP

0.6⇥ / 0.5⇥ 2.0⇥ / 1.2⇥ 2.0⇥ / 1.1⇥

2.8⇥ / 1.3⇥ 1.2⇥ /0.6⇥ 3.0⇥ / 1.1⇥

2.0⇥ / 1.5⇥ 1.0⇥ / 0.5⇥ 0.7⇥ / 1.3⇥

Figure 1: Matrices reordered with Reverse Cuthill-
McKee (RCM), Nested Dissection (ND) and graph par-
titioning (GP). The numbers below represent speedup
(or slowdown) of SpMV on 64-core AMD Epyc Milan
and 36-core Intel Ice Lake CPUs, respectively.

several challenges, including the di�culty of �nding an opti-
mal ordering, matrices already having an e�cient ordering,
or the new ordering causing performance degradation by
introducing load imbalance in parallel computations. Addi-
tionally, orderings that bene�t one architecture may not be
useful or even harmful for others.

To demonstrate this with a concrete example, Figure 1
displays a few matrices with their original sparsity patterns,
along with their patterns after applying three frequently used
reorderings. Additionally, the �gure indicates the speedup
(or slowdown) of SpMV over the unordered matrix in two
di�erent platforms. The �gure highlights three main obser-
vations: (i) di�erent reorderings lead to a diverse distribution
of matrix nonzeros, which consequently results in signi�cant
performance improvement or degradation depending on the
algorithm-matrix pair; (ii) although a reordering algorithm
can enhance the performance of one matrix, it may reduce
the performance of another; (iii) the e�cacy of a reordering
algorithm depends on the architecture.

In this paper, our primary objective is to o�er a compre-
hensive analysis of the confusing and often contradictory

1

Figure 1 Matrices reordered with Reverse Cuthill-McKee (RCM), Nested Dissection (ND) and graph parti-
tioning (GP). The numbers below represent speedup (or slowdown) of SpMV on 64-core AMD Epyc Milan and
36-core Intel Ice Lake CPUs, respectively.

2.1.3 ml-based sparse reordering performance prediction

In a typical CSR matrix with four-byte indices and eight-byte values, SpMV consumes a little more
memory bandwidth than 12 bytes per nonzero when all vector elements are cached. If instead one
cache line must be fetched for every vector value, the memory bandwidth requirement increases
to 76 bytes on a typical CPU, thus causing a slowdown of more than 6× in the extreme case.
Memory access latency may make this effect even worse.4

This problem can be alleviated by using Reverse Cuthill-McKee (RCM)5 or other reorder-
ing algorithms that improve cache locality. Doing so can also indirectly improve load balance.
However, when using 1D SpMV algorithms, reordering for cache reuse can also worsen load
imbalance. This happens with matrices that have a widely varying number of nonzeroes per row
and a relatively even distribution of longer and shorter rows among the cores. Figure 1 illustrates
the effects of different reorderings.

A typical example is Kronecker graphs which are generated for the Graph500 benchmark.6 In
this case, a random ordering of the rows generally ensures a good load balance for 1D algorithms.

4Johannes Langguth et al. “Parallel performance modeling of irregular applications in cell-centered finite volume
methods over unstructured tetrahedral meshes”. Journal of Parallel and Distributed Computing 76 (2015), pp. 120–131.
doi: 10.1016/j.jpdc.2014.10.005.

5Elizabeth Cuthill. “Several Strategies for Reducing the Bandwidth of Matrices”. Sparse Matrices and their Applica-
tions. Springer, 1972, pp. 157–166.

6Richard C Murphy et al. “Introducing the Graph 500”. Cray Users Group (CUG) 19 (2010), pp. 45–74.

SparCity 4

https://doi.org/10.1016/j.jpdc.2014.10.005

However, this load balance will typically disappear when applying an RCM reordering, since the
bandwidth minimization does not consider load balance and may, e.g., cluster denser rows.

For this reason, we focused first on predicting the performance gains of using the RCM
algorithm combined with the 2D SpMV method. This problem differs from the format selection
problem because the features that are commonly used for SPMV format selection are not sensitive
to the row order of the matrix. Thus, they are not usable when predicting the effects of matrix
reorderings since they are identical for all possible orderings of a given matrix. Therefore, we
proposed two new order-dependent features based on simplified simulations of the cache: the
group reuse rate and the cache reuse rate. Both are relatively simple and, unlike CNNs, can be
computed efficiently even for large graphs. Furthermore, they do not lose information with
increasing matrix size, which is a problem with CNNs since they have to scale large matrices to
fit their input size.

The first feature is called group reuse rate. It attempts to capture spatial locality through a
simple, single-line cache model for a straightforward SpMV algorithm. We assume the single
available cache line consists of N consecutive elements which are always loaded simultaneously
from memory. We assume that matrix nonzeros are accessed in row-major order. For the first
nonzero of the matrix, a load is triggered which moves N consecutive vector elements into the
cache, starting with the element corresponding to the position of the nonzero. For each subsequent
nonzero, if the corresponding vector element is in the cache, a reuse event is triggered and we
move on to the next nonzero. Otherwise, a new load event is triggered, as described above. For
simplicity, our model of the group reuse rate does not assume that cache lines begin and end at
multiples of the cache line size N. Although this is different from how CPU caches operate in
reality, the model works well enough in practice.

* * * * * * * * * *

1 2 3

4

5 6

1

2

3
4

4 loads= group reuse rate
NZs

6

* * * * * * * * * *

1 2 3 4 7 8 5 6
9

1 2
3

4

* * * * * * *

5 6

loads8

* * * * *

7 8

Cache of 4 lines

Row
1

Row
2

Row
3

= cache reuse rate
NZs

1 2
12 13 14

10
11

14

Figure 2 An example of the group reuse rate (left) and the cache reuse rate (right).

After all the nonzeros have been accessed, the group reuse rate is obtained by simply dividing
the number of reuse events by the number of nonzeros in the matrix. Since each cache line has
one load and up to N− 1 reuse events, the best possible reuse rate is (N− 1)/N.

We also introduce a second type of feature which we call cache reuse rate. It represents a
simplified multi-line cache access simulation implemented for a simple SpMV algorithm. As with
the group load and reuse rates, a cache line consists of N elements, but now there are M cache lines
organized in an ordered list. Again, the nonzeros in the matrix are accessed consecutively, and
the first element triggers a load event.

For each subsequent nonzero, if the corresponding vector element is currently present in any
of the already loaded cache lines, a reuse event is triggered and the cache line that contained
the cached element is moved to the top of the cache line access list. If the vector element is not
currently in the cache, a load event will be triggered, loading another cache line which is placed
on top of the cache line access list. If at least M cache lines have been loaded, the line on the
bottom of the access list must be evicted before a new cache line can be loaded. This is part of a

SparCity 5

Table 1 Prediction quality of the random forest classifier for medium and large instances. Left: performance
metrics. Right: Percentage of maximum performance reached by the different reordering strategies.

large medium
True positives 159 457

True negatives 26 9

False positives 11 95

False negatives 0 2

Accuracy 0.94 0.83

Precision 0.94 0.83

Sensitivity 1 1

Specificity 0.7 0.09

F1 score 0.97 0.9

Prediction Always RCM Never RCM
Large
Epyc 7763 99.38 96.77 73.23

Epyc 7601 99.27 97.65 77.15

Epyc 7413 99.78 96.07 72.34

Epyc 7302P 99.08 94.19 79.02

Xeon 6130 99.07 94.8 78.78

Xeon 8360Y 99.97 99.28 79.29

Medium
Epyc 7763 84.42 84.16 74.8
Epyc 7601 97.4 98.19 89.08

Epyc 7413 83.67 82.3 71.98

Epyc 7302P 96.54 97.4 83.5
Xeon 6130 96.87 97.23 79.16

Xeon 8360Y 98.35 98.06 90.93

single-load event. In this manner, we simulate a simple fully associative least recently used (LRU)
policy. Once the simulation is finished, the cache reuse rate is obtained by dividing the number
of reuse events by the number of nonzeros in the matrix. An example of both features is shown
in Figure 2. By default, we compute this feature with N set to 64 and M to 65536.

Based on the structure-dependent features, we develop a qualitative performance prediction
model in order to determine whether a given matrix can be reordered to increase SpMV perfor-
mance. Thus, we have to solve a classification problem with two classes. For this purpose, we
use a standard Random Forest classifier. The Random Forest classifier not only performs well for
small datasets, but it can also handle input features of different scales without pre-normalization
of the feature values. We train two classifiers, one for large matrices with more than 100 million
nonzeroes, and one for medium-sized matrices with 10 to 100 million nonzeroes. There is no
need for a classifier for smaller instances since they can run entirely out of cache.

To verify the accuracy of the classifiers, we show the standard classification performance
metrics in Table 1 on the left. The classifier for the large matrices shows very good accuracy.
However, for the medium-size matrices, the classification performance is lower.

In Table 1, right side, we show the effect of applying the predictions. We weigh every matrix
by the number of nonzeroes in order to reflect that mispredictions on larger matrices are more
costly. Clearly, RCM is beneficial for most, but not all matrices, and the classifier correctly predicts
that in almost all cases. Furthermore, applying RCM when it is not needed is very costly. While
we used a slow sequential code, based on the fastest parallel implementation of RCM,7 reordering
takes roughly as much time as 300 SpMV iterations. About 14% of the instances do not benefit
from RCM, and in these cases using our system saves this cost.

Thus, we have presented a first classifier that can successfully predict whether applying a
reordering is beneficial for SpMV performance, a question that often has a higher impact than
the format selection problem which was studied earlier.

7Ariful Azad et al. “The reverse Cuthill-McKee algorithm in distributed-memory”. 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE. 2017, pp. 22–31.

SparCity 6

Table 2 Sparse matrix reordering algorithms used in this study

Short Name Reordering Algorithm Description

RCM9 Reverse Cuthill–McKee bandwidth reduction via breadth-first graph traversal
AMD10 Approximate minimum degree local greedy strategy to reduce fill by selecting sparsest pivot row
ND11 Nested dissection recursive divide-and-conquer using vertex separators to reduce fill
GP12 Graph partititoning multi-level recursive graph partitioning with METIS using edge-cut objective
HP13 Hypergraph partititoning column-net hypergraph partitioning with PaToH using cut-net metric
Gray14 Gray code ordering splitting of sparse and dense rows and Gray code ordering

2.1.4 extended reordering performance experiments

Alternatives to the Reverse Cuthill-McKee (RCM) algorithm were also studied and the results
published.8 The paper contains the details of this investigation. To provide an overview, we
categorise reordering algorithms into 1) bandwidth-reducing orderings, 2) fill-reducing orderings
3) graph and hypergraph partitioning-based orderings, and 4) other orderings.

Bandwidth-Reducing Orderings: Well-known examples of such orderings include the Cuthill-
McKee (CM) algorithm15 and the method described by Gibbs et al..16 The CM ordering attempts
to reduce the matrix bandwidth through a breadth-first search of the undirected graph corre-
sponding to a symmetric sparse matrix. The vertices of the graph, which correspond to rows
and columns of the matrix, are ordered by choosing a starting vertex (e.g., by finding a pseudo-
peripheral vertex17) and then traversing the graph in breadth-first search order, where the vertices
at each level are sorted in ascending order by degree. In the end, after traversing the entire graph,
the ordering may be reversed to obtain the more commonly used Reverse Cuthill-McKee (RCM)18

ordering.
Fill-Reducing Orderings: Minimum degree orderings19 arise in the context of reducing fill-

in during sparse Cholesky factorisation. The elimination graph of a sparse symmetric matrix
consists of a vertex for every row, as well as edges between any pair of vertices a and b for which
row a has a nonzero above the diagonal in column b. At each step of the factorisation, one row
is eliminated by removing a vertex and its edges in the elimination graph, and replacing it with
a clique consisting of the former neighbours of the vertex. The new edges that are created by
forming such a clique lead to fill-in of the Cholesky factor. The minimum degree algorithm is a
graph-based heuristic to find node orderings with low amounts of fill by always selecting a vertex

8James D Trotter et al. “Bringing Order to Sparsity: A Sparse Matrix Reordering Study on Multicore CPUs”.
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2023, pp. 1–
13.

15E. Cuthill and J. McKee. “Reducing the Bandwidth of Sparse Symmetric Matrices”. Proceedings of the 1969 24th
National Conference. Association for Computing Machinery, 1969, pp. 157–172. doi: 10.1145/800195.805928.

16Norman E. Gibbs, William G. Poole, and Paul K. Stockmeyer. “An Algorithm for Reducing the Bandwidth and
Profile of a Sparse Matrix”. SIAM Journal on Numerical Analysis 13.2 (1976), pp. 236–250. issn: 00361429.

17Alan George and Joseph W. H. Liu. “An Implementation of a Pseudoperipheral Node Finder”. ACM Transactions
on Mathematical Software 5.3 (1979), pp. 284–295. doi: 10.1145/355841.355845.

18Wai-Hung Liu and Andrew H Sherman. “Comparative analysis of the Cuthill-McKee and the reverse Cuthill-
McKee ordering algorithms for sparse matrices”. SIAM Journal on Numerical Analysis 13.2 (1976), pp. 198–213.

19Alan George and David R. McIntyre. “On the Application of the Minimum Degree Algorithm to Finite Element
Systems”. SIAM Journal on Numerical Analysis 15.1 (1978), pp. 90–112. issn: 00361429. url: http://www.jstor.org/
stable/2156565; Alan George and Joseph WH Liu. “The evolution of the minimum degree ordering algorithm”.
SIAM Review 31.1 (1989), pp. 1–19; Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. “Algorithm 837: AMD,
an Approximate Minimum Degree Ordering Algorithm”. ACM Trans. Math. Softw. 30.3 (2004), pp. 381–388. issn:
0098-3500. doi: 10.1145/1024074.1024081.

SparCity 7

https://doi.org/10.1145/800195.805928
https://doi.org/10.1145/355841.355845
http://www.jstor.org/stable/2156565
http://www.jstor.org/stable/2156565
https://doi.org/10.1145/1024074.1024081

of least degree.
Another commonly used fill-reducing ordering is Nested dissection (ND),20 which is based

on computing a vertex separator for the undirected graph of a symmetric sparse matrix. The
two subgraphs that arise from removing the separator are ordered first, while rows and columns
corresponding to the separator are moved to the end of the matrix. This process is applied
recursively for the two subgraphs. The underlying motivation for the ND ordering is that it
incurs low fill-in for sparse Cholesky factorization if the separators are small. Since the method
relies on graph partitioning, it can be grouped under graph partitioning-based orderings as well.

(Hyper)graph partitioning-based orderings: Graph partitioning can be used to define an
ordering by directly partitioning a matrix into a given number of parts, then grouping rows
and columns by their assigned parts. This approach is frequently used in a distributed-memory
setting to perform work division of sparse matrix operations, and the same idea can be applied
to the shared-memory case. METIS21 is a well-known graph partitioning tool that can be used
to partition large irregular graphs. It is based on the multilevel paradigm which consists of the
graph coarsening, initial partitioning, and uncoarsening phases. The aim of the partitioning is to
minimize a partitioning objective, while obeying a load balancing criteria.

Hypergraph partitioning may similarly be used for reordering. PaToH22 is a commonly-used
hypergraph partitioning tool which is known to reflect the actual communication volume require-
ment of parallel SpMV. Hypergraphs are the generalization of graphs, in which the hyperedges
(nets) can be incident to any number of vertices instead of exactly two vertices in simple graphs.
The hypergraph partitioning problem is the task of dividing a hypergraph into roughly balanced
parts such that the cutsize is minimized. Other reorderings based on hypergraph partitioning
include the separated block diagonal form proposed by Yzelman and Bisseling.23

Other Orderings: A number of alternative matrix orderings have been proposed with the goal
of improving data locality in SpMV, including approaches based on the travelling salespesrson
problem24 and space-filling curves.25 One particular method, which we call Gray ordering,26

is motivated by microarchitectural concerns to reduce branch mispredictions and improve data
locality for SpMV. First, to improve branch prediction, rows with similar nonzero density are
grouped together (density reordering). Second, to improve locality, a bitmap-based reordering is
applied, where each row is segmented into multiple sections of nonzeros (to construct the row

20Alan George. “Nested Dissection of a Regular Finite Element Mesh”. SIAM Journal on Numerical Analysis 10.2
(1973), pp. 345–363. doi: 10.1137/0710032; J. R. Gilbert and R. E. Tarjan. “The Analysis of a Nested Dissection
Algorithm”. Numer. Math. 50.4 (1987), pp. 377–404. issn: 0029-599X. doi: 10.1007/BF01396660.

21George Karypis and Vipin Kumar. “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs”.
SIAM Journal on Scientific Computing 20.1 (1998), pp. 359–392. doi: 10.1137/S1064827595287997.

22U.V. Catalyurek and C. Aykanat. “Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector
multiplication”. IEEE Transactions on Parallel and Distributed Systems 10.7 (1999), pp. 673–693. doi: 10.1109/71.780863.

23A. N. Yzelman and Rob H. Bisseling. “Cache-Oblivious Sparse Matrix–Vector Multiplication by Using Sparse
Matrix Partitioning Methods”. SIAM Journal on Scientific Computing 31.4 (2009), pp. 3128–3154. doi: 10.1137/

080733243.
24Ali Pinar and Michael T. Heath. “Improving Performance of Sparse Matrix-Vector Multiplication”. Proceedings

of the 1999 ACM/IEEE Conference on Supercomputing. Portland, Oregon, USA: Association for Computing Machinery,
1999. doi: 10.1145/331532.331562; D.B. Heras et al. “Modeling and improving locality for the sparse-matrix–vector
product on cache memories”. Future Generation Computer Systems 18.1 (2001), pp. 55–67. issn: 0167-739X. doi:
10.1016/S0167-739X(00)00075-3.

25Leonid Oliker et al. “Effects of Ordering Strategies and Programming Paradigms on Sparse Matrix Computations”.
SIAM Review 44.3 (2002), pp. 373–393. doi: 10.1137/S00361445003820.

26Haoran Zhao et al. “Exploring Better Speculation and Data Locality in Sparse Matrix-Vector Multiplication on Intel
Xeon”. 2020 IEEE 38th International Conference on Computer Design (ICCD). 2020, pp. 601–609. doi: 10.1109/ICCD50377.
2020.00105.

SparCity 8

https://doi.org/10.1137/0710032
https://doi.org/10.1007/BF01396660
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1109/71.780863
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243
https://doi.org/10.1145/331532.331562
https://doi.org/10.1016/S0167-739X(00)00075-3
https://doi.org/10.1137/S00361445003820
https://doi.org/10.1109/ICCD50377.2020.00105
https://doi.org/10.1109/ICCD50377.2020.00105

Table 3 Hardware used in our experiments.

Skylake Ice Lake Naples Rome Milan A Milan B TX2 Hi1620

CPUs Intel
Xeon
Gold
6130

Intel
Xeon
Plat-
inum

8360Y

AMD
Epyc
7601

AMD
Epyc

7302P

AMD
Epyc
7413

AMD
Epyc
7763

Cavium
TX2

CN9980

HiSilicon
Kunpeng
920-6426

Instr. set x86-64 x86-64 x86-64 x86-64 x86-64 x86-64 ARMv8.1 ARMv8.2
Microarch. Skylake Ice Lake Zen Zen 2 Zen 3 Zen 3 Vulcan TaiShan

v110
Sockets 2 2 2 1 2 2 2 2
Cores 2 × 16 2 × 36 2 × 32 1 × 16 2 × 24 2 × 64 2 × 32 2 × 64

Freq. [GHz] 1.9–3.6 2.4–3.5 2.7–3.2 1.5–3.3 2.5–3.5 2.5–3.5 2.0–2.5 2.6
L1I/core [KiB] 32 32 64 32 32 32 32 64
L1D/core [KiB] 32 48 32 32 32 32 32 64
L2/core [KiB] 1024 1280 512 512 512 512 256 512
L3/socket
[MiB]

22 54 64 16 128 256 32 64

Bandwidth [GB/s] 256 409.6 342 204.8 409.6 409.6 342 342

bitmaps), which are then labeled and ordered based on the Gray code.27 In general, the matrix
is first split into dense and sparse submatrices according to the number of nonzeros in each row,
while the density and bitmap reorderings are applied depending on the characteristics of each
submatrix.

The hardware used in our experiments is shown in Table 3. All codes are compiled with GCC
11.2.0 with the -O3 and -march=native options on each node, and the test systems are running
Ubuntu 18.04.6.

Our evaluation relies on the SuiteSparse Matrix Collection.28 We apply six reorderings (see
Table 2) to 490 matrices that are square, non-complex and have between 1 million and 1 billion
nonzeros. On converting the matrices to CSR format, column offsets are stored as 32-bit integers
and nonzero values as double precision floating point numbers. In the case of symmetric matri-
ces, whenever an offdiagonal nonzero is encountered, two nonzeros are inserted into the CSR
representation, one in the upper and another in the lower triangle of the matrix.

Each SpMV run is repeated 100 times, and we take the maximum performance among the
runs. This represents the peak performance of a system with a warm cache and is less susceptible
to noise than the average. Note that for smaller matrices used in our evaluation, some or all of
the data may fit in last-level cache. For example, the AMD Epyc 7763 has the largest last-level
cache at a total of 512 MiB. Only 77 matrices have more than 45 million nonzeros, which is the
minimum size needed to exceed the capacity of the last-level cache if matrices are stored in CSR
format.

Figures 3 and 4 provide a comprehensive analysis of the relationship between matrix reorder-
ing algorithms and their performance on SpMV. Through a large sparse matrix dataset using six
broadly used reordering algorithms on eight state-of-the-art multicore architectures, we showed

27Sardar Anisul Haque and Shahadat Hossain. “A Note on the Performance of Sparse Matrix-vector Multiplication
with Column Reordering”. 2009 International Conference on Computing, Engineering and Information. 2009, pp. 23–26.
doi: 10.1109/ICC.2009.40.

28Timothy A. Davis and Yifan Hu. “The University of Florida Sparse Matrix Collection”. ACM Trans. Math. Softw.
38.1 (2011). issn: 0098-3500. doi: 10.1145/2049662.2049663.

SparCity 9

https://doi.org/10.1109/ICC.2009.40
https://doi.org/10.1145/2049662.2049663

0.1

1

10

Skylake Ice Lake Naples Rome Milan A Milan B TX2 Hi1620

sp
ee

du
p

RCM ND AMD GP HP Gray

Figure 3 Speedup of sparse matrix-vector multiplication using 1D algorithm after reordering. For each box,
the middle line represents the median and endpoints represent the lower and upper quartiles.

0.5

1

1.5

2

2.5

Skylake Ice Lake Naples Rome Milan A Milan B TX2 Hi1620

sp
ee

du
p

RCM AMD ND GP HP Gray

Figure 4 Speedup of the nonzero-balanced CSR SpMV kernel (2D algorithm) after reordering.

SparCity 10

how the effectiveness of reordering relates to various factors, such as reordering algorithm, load
balancing concerns, and off-diagonal nonzero counts. The results indicate that graph partitioning
is generally the preferred reordering method. Furthermore, reorderings are far more relevant on
ARM based processors than on x86. The techniques discussed in Section 2.1.3 can be applied to
all reordering methods tested here.

2.2 automated kernel fusion

Kernel fusion refers to the optimization technique in computer programming where multiple
computational operations, known as kernels, are combined or fused into a single, more efficient
unit of execution by reducing the overhead associated with preparing and launching sequential
kernels, as well as enforcing more cohesive access to resources such as memory, resulting in better
cache utilization. Kernel fusion is done automatically or manually. Automated kernel fusion is a
process where software tools or compilers automatically combine multiple computational kernels
into a single optimized unit. In contrast, manual kernel fusion is done ad-hoc and by developers,
via combining two or more kernels manually into an optimized unit.

Kernel fusion has been extensively performed on CPUs29 to achieve increases in performance
and reduction in energy usage. However, GPUs are the leading accelerator in modern High
Performance Computing (HPC) systems, equipping 7 of the 10 leading Top500

30 supercomputers
in the world today. GPUs are frequently used to solve scientific and computational problems, as
they offer hundreds to thousands of cores in contrast with dozens on a CPU, albeit slower and
with more limitations. Kernel fusion has been applied extensively in GPUs as well.31

In recent years, graphs with billions of vertices have been used to represent a diverse number
of real-world problems such as scientific computations, social networks, machine learning and
biology. Speeding up graph processing algorithms can improve the efficiency of these computa-
tions. As such, many graph processing algorithms are proposed and the area is well studied in
recent years.32

29Hongzheng Chen et al. “Krill: a compiler and runtime system for concurrent graph processing”. Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis. 2021, pp. 1–16; Peitian Pan
and Chao Li. “Congra: Towards efficient processing of concurrent graph queries on shared-memory machines”. 2017
IEEE International Conference on Computer Design (ICCD). IEEE. 2017, pp. 217–224; Abbas Mazloumi, Xiaolin Jiang, and
Rajiv Gupta. “Multilyra: Scalable distributed evaluation of batches of iterative graph queries”. 2019 IEEE International
Conference on Big Data (Big Data). IEEE. 2019, pp. 349–358; Jilong Xue et al. “Seraph: an efficient, low-cost system for
concurrent graph processing”. Proceedings of the 23rd international symposium on High-performance parallel and distributed
computing. 2014, pp. 227–238; Jin Zhao et al. “GraphM: an efficient storage system for high throughput of concurrent
graph processing”. Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis. 2019, pp. 1–14.

30Erich Strohmaier. “TOP500 supercomputer”. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing.
Tampa, Florida: Association for Computing Machinery, 2006, 18–es. doi: 10.1145/1188455.1188474. url: https:
//doi.org/10.1145/1188455.1188474.

31Guibin Wang, YiSong Lin, and Wei Yi. “Kernel fusion: An effective method for better power efficiency on
multithreaded GPU”. 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference on
Cyber, Physical and Social Computing. IEEE. 2010, pp. 344–350; Mohamed Wahib and Naoya Maruyama. “Scalable kernel
fusion for memory-bound GPU applications”. SC’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE. 2014, pp. 191–202; Jiřı́ Filipovič et al. “Optimizing CUDA code by
kernel fusion: application on BLAS”. The Journal of Supercomputing 71.10 (2015), pp. 3934–3957.

32Yunming Zhang et al. “Graphit: A high-performance graph dsl”. Proceedings of the ACM on Programming Languages
2.OOPSLA (2018), pp. 1–30; Chen et al., “Krill: a compiler and runtime system for concurrent graph processing”;
Julian Shun and Guy E Blelloch. “Ligra: a lightweight graph processing framework for shared memory”. Proceedings
of the 18th ACM SIGPLAN symposium on Principles and practice of parallel programming. 2013, pp. 135–146; Pan and Li,
“Congra: Towards efficient processing of concurrent graph queries on shared-memory machines”; Yangzihao Wang
et al. “Gunrock: A high-performance graph processing library on the GPU”. Proceedings of the 21st ACM SIGPLAN

SparCity 11

https://doi.org/10.1145/1188455.1188474
https://doi.org/10.1145/1188455.1188474
https://doi.org/10.1145/1188455.1188474

Within the SparCity project, we introduced an automated framework for concurrent graph
processing kernel fusion in GPUs with the following contributions: We developed and imple-
mented of an automated kernel fusion framework. We tested four graph jobs using the framework,
namely Breadth-First Search (BFS), Single-Source Shortest Path (SSSP), PageRank (PR) and La-
bel Propagation (LP). We developed a meta-compiler to enable memory-efficient shared data
structures for computational jobs, as well as facilitation of static polymorphism. We performed
extensive evaluation of the framework with the implemented jobs on two different platforms
with different combinations of up to 100 parallel jobs, demonstrating about 2% to 10% increase
in runtime performance with kernel fusion.

2.2.1 kernel fusion framework

To enable kernel fusion within GPU, we developed a framework to streamline creation, dispatch-
ing and fusion of different GPU jobs. The framework is created in C++, with supporting scripts in
other languages. Graphs are represented as adjacency lists using the AdjacencyGraph class. They
are read from files and stored in CPU and GPU memory as adjacency lists (two arrays for nodes
and edges respectively). GPU jobs inherit from the base class AbstractJob, which denotes whether
or not a job is active, what its current frontier is, and whether or not it is finished. AbstractJob
also assists in initialization of jobs, by streamlining memory allocation and movement between
CPU and GPU using helper methods.

Each job that inherits from AbstractJob needs to explicitly define 4 sections:

1. Auxiliary data (metadata): constants or variables needed by the job, usually involving
several integer variables such as starting node index, as well as at least one array the size of
the graph (e.g., visited nodes, distance, etc.).

2. Constructor: sets the initial variables of a job, such as the starting node, number of iterations,
etc.

3. Initializer: is used to allocate and initialize job data in the GPU and assign their respective
data pointers.

4. GPU-specific kernel: used to do the actual computation (in each iteration).

Auxiliary data needs to be defined in a specific order at a certain section of the job definition,
as the meta-compiler relies on these definitions to construct the FusionJob class (as explained
below). The GPU kernel receives the GPU thread id and the input graph. It has to perform both
its core computation function, as well as update the job’s frontier in the graph (i.e., what the next
active nodes are going to be), and mark whether the job is completed or not. The framework also
includes a RunJobs function that iterates over a list of jobs, performs kernel fusion (if enabled)
and iterates over all jobs via a GPU kernel called IterJobs until all jobs are done. RunJobs is also
in charge of collecting runtime and performance metrics from CPU, GPU, fusion algorithm, etc.

IterJobs is the GPU entry point of the framework, executed once per graph node. It is in
charge of polymorphically calling all job kernels for each graph node, and passing them their
respective metadata. IterJobs also checks whether jobs are still active and whether they are
still not finished, before dispatching them. All jobs that are active and not completed will be
dispatched, in order, during IterJobs. Finally, the framework includes Fusion, which is in charge
of fusing job kernels based on their data access patterns to improve performance. Another

symposium on principles and practice of parallel programming. 2016, pp. 1–12; Xue et al., “Seraph: an efficient, low-cost
system for concurrent graph processing”.

SparCity 12

component in the framework is an accurate timer used to profile different sections and activities
and provide detailed time measurements.

Kernel Fusion Framework Jobs Pool

BFSJob

SSSPJob

PageRankJob

LabelPropagationJob

…

Input Graph

Meta-Compiler

Job Creation

Jobs

Execution Loop

Fusion

Iteration

Done?No

Yes

Timer/Profiler

Figure 5 The architecture of the kernel fusion framework. The defined jobs in the job pool are compiled by the
meta-compiler, and then multiple jobs are created based on an input graph. The created jobs are then passed on
to the execution loop, which fuses and runs them until they are all done.

Figure 5 provides an overview of the described architecture, while Figure 6 provides an
overview of the framework and how it works. Line 1⃝ defines the input graph, loads it from the
input file (into both the CPU and the GPU), and assigns it to a variable. Line 2⃝ creates several jobs
based on the defined criteria. Each created job is automatically initialized by allocating necessary
memories, and setting initial metadata such as starting node, distance arrays, etc. Line 3⃝ is the
start of simplified RunJobs function, where jobs are executed until all of them are done. Line 4⃝
performs kernel fusion for the jobs (if enabled). The result of this fusion is that some jobs will be
active (for the current iteration), while others will be inactive. Line 5⃝ finally launched the GPU
kernel IterJobs that runs the jobs in the GPU.

The rest of the listing covers the IterJobs GPU kernel. This kernel is executed as many times
as there are nodes in the input graph. Line 6⃝ assigns the id of the current GPU thread to the
variable id. The subsequent line ensures that id is not larger than the number of nodes in the
graph. Line 7⃝ – the starting line of the loop that is executed as many times as the number of
jobs – makes sure that the job is active in this iteration. Without fusion, all jobs are always active.
With fusion, only jobs that are selected by the fusion algorithm are active. Line 8⃝ skips any job
that is already finished. Line 9⃝ makes sure that the current job in the current execution for the
current thread id has an active frontier, i.e., nodes that are actively being worked on. Line 10⃝ and
subsequent lines are auto-generated by the meta-compiler to enable polymorphism, and run the
job-specific iteration function. This is further expanded on in Section 2.2.1.

SparCity 13

Figure 6 The simplified overall flow of the fusion framework.

Fusion Polymorphism. Since the framework needs to run different jobs at runtime (as a list of
jobs), and because it is a compiled C++ program, it needs to utilize polymorphism. However, this
polymorphism is partially performed on the CPU (initialization, fusion) and partially on the GPU
(kernels, fusion).

This work investigated three avenues for implementation of this polymorphism: C++ vir-
tual functions and inheritance (native polymorphism), Runtime Type-Information (RTTI) based
polymorphism, i.e., adding extra variables and code to jobs that defines their runtime types and
behaviors, and meta-compiler static polymorphism, i.e., generating code based on available types
and only passing minimal job type information at runtime via switch statements.

Native polymorphism enjoys somewhat limited support in CUDA. Specifically, it requires
objects to be allocated on CUDA heap directly, otherwise virtual function tables will not be on
device (i.e., in GPU memory). However, the default heap is quite limited, and can only be resized
once per program, to a maximum of about 80% of GPU memory, i.e., it cannot be sized down
later. Furthermore, our evaluations show that there is a significant performance hit for using
native C++ polymorphism in CUDA. For these reasons, we decided to use other alternatives.

RTTI-based polymorphism requires specific compiler flags and passing of additional variables
and data to the GPU, as well as allocation of objects on GPU heap within GPU code. Due to these
limitations, this approach was also not desirable.

SparCity 14

Finally, as a solution we decided to use a meta-compiler that adds small sections of code based
on available GPU jobs and then compiles them to native code.

Meta-Compiler. The meta-compiler scans the code for all defined jobs that inherit from Abstrac-
tJob, and creates a list of available jobs as a C++ Enum. For example in Figure 7 this enum is then
used in each class’s constructor to explicitly set its type in a member variable called job type,
as apparent in 2⃝. The meta-compiler subsequently adds a small section of switch statements
inside IterJobs that dispatches the appropriate job kernel based on the type of the job instance.
Finally, and most importantly, the meta-compiler needs to create a new FusionJob structure, that
includes metadata of all available jobs in as little memory as possible, as this data is allocated and
passed to the GPU in bulk for all jobs at the same time (for performance reasons).

Figure 7 The C++ enum of all jobs generated by the meta-compiler, as well as its usage in constructor of jobs
to define their runtime type.

FusionJob Structure. To generate the code for FusionJob structure, the meta-compiler needs to
scan all available jobs and determine which metadata each one uses. The order of usage of this
metadata, as well as their variable names and variable types are then used to create a class called
FusionJob that uses C++ unions to minimize memory footprint, while allowing access to all these
variables and their respective types in each job.

Kernel Fusion. As depicted in Figure 5, before each iteration, the framework performs kernel
fusion (if enabled). Kernel fusion can be disabled to compare runtime performance with and
without fusion. Additionally, the framework distinctively reports total job completion time, time
spent on GPU, and time spent on fusion, as well as the time spent in each of the fusion steps.

Algorithm. The fusion algorithm finds the shared frontier of all jobs, i.e., the union of all the
nodes that all jobs will work on in the next iteration. It then finds the subset of this shared frontier
that is maximally used by all remaining jobs. Finally, the algorithm marks jobs that will work on
this maximal shared frontier in the next iteration, as active, and all other jobs as inactive. This
algorithm ensures that memory accesses to nodes on this maximal shared frontier will be shared
by several jobs, resulting in effective caching in memory access which can significantly speedup
job execution.

SparCity 15

Figure 8 The expanding frontier of 3 jobs running in parallel

Figure 8 shows 3 jobs traversing the same graph from three different starting nodes, node I,
G and C, respectively. In the next iteration (b), the jobs have expanded to access nodes (F, H)
for job 1, (D, H) for job 2 and (B, F) for job 3. Notice that no node is shared between all three
jobs, whereas node H is shared between job 1 and job 2, and node F is shared between jobs 1

and 3. As such, fusion can deactivate job 3, and run jobs 1 and 2, making them access node H
simultaneously, resulting in one less uncached memory access.

In the next iteration (c), each job has an expanding frontier that encompasses 3 nodes. This
is a typical trend in graph traversal, in the first few iterations, the frontiers are quite small, but
they exponentially expand to include a significant portion of the entire graph, and then gradually
dwindle in size to reach zero once the traversal is completed. As apparent from the Figure, in the
third iteration, nodes (A, E, I) are shared between jobs 2 and 3, while node E is shared between
all three jobs. If the fusion algorithm picks jobs 2 and 3 to run, there will be 3 memory accesses
for traversing 3 nodes by 2 jobs (i.e., 6 node accesses), pushing execution of job 1 to the next
iteration with its own distinct 3 memory accesses; whereas if the fusion algorithm picks all 3

jobs, there will be 5 memory accesses for traversing 5 nodes by 3 jobs (i.e., 9 node accesses). The
latter selection results in a total of 5 memory accesses for completion of iteration 3 of all jobs, in
contrast with 6 memory accesses in the former.

Our evaluations show that accessing the same memory regions by concurrent jobs can result
up to 500 times faster runtime compared to sporadic memory access by different jobs. This
speedup is achieved by running all jobs in the same order, starting from the same node and
traversing the graph in identical patterns, in contrast with each job starting at a different point or
performing a different traversal.

Finding the maximal shared frontier is a computationally intensive algorithm. Frontiers of
all jobs need to be scanned first – each of which is potentially as large as the entire graph – to
find the shared frontier among all jobs. To find the maximal shared frontier within the previously
discovered shared frontier, the fusion algorithm needs to count how many times each node
in the shared frontier is accessed by each job. Once the nodes with maximum access count are
discovered, jobs that have these nodes in their frontier need to be listed, and subsequently marked
as active (while all other jobs are deactivated).

As such, the framework implements the part of the fusion algorithm that finds the maximal
shared frontier, inside the GPU itself (to follow a more CPU-independent execution model33),
avoiding the need to copy frontiers of each job back to the CPU, and reducing the footprint of

33Ismayil Ismayilov et al. “Multi-GPU Communication Schemes for Iterative Solvers: When CPUs are Not in Charge”.
Proceedings of the 37th International Conference on Supercomputing. 2023, pp. 192–202.

SparCity 16

fusion from around 10% of job execution time to between 1% to 2% of job execution time.

2.2.2 evaluation

In this section, datasets, environment setup and job lists are described, then multiple experiments
are performed to evaluate the effectiveness of the proposed GFuse framework.

Table 4 List of graphs used in evaluations dataset.

Graphs Vertex Count Edge Count Diameter
1 LiveJournal 4,847,571 68,993,773 16

2 Patents 6,009,555 16,518,948 22

3 Higgs 456,631 14,855,875 9

4 Pokec 1,632,803 30,622,564 11

5 Youtube 1,134,890 2,987,624 20

6 Wiki-Talk 2,394,385 5,021,410 9

The graph dataset used for evaluations is listed in Table 4. Six widely used graphs – with
varying sizes and structures – were selected. All of these graphs are extensively used in previous
works34 , and their sizes range from 500k nodes to 5 million nodes in size.

Four popular graph processing algorithms – widely used by previous work and in the industry
– were selected and implemented on top of the framework as jobs. The implementations are
straightforward and not particularly optimized, following the job definition patterns defined in
the framework. These algorithms include Breadth-First Search (BFS), Bellman-Ford Single-Source
Shortest Path (SSSP), PageRank (PR) and Label Propagation (LP) algorithm, as listed in Table 5.

To demonstrate the efficacy of the automated kernel fusion framework in different work load
scenarios, 4 different job sets were devised.These job sets can be observed in Table 6. Job sets
are all homogeneous meaning all parallel jobs are of the same algorithm although with different
parameters such as starting nodes.

As this work is the first to automatically fuse graph processing algorithms together on a GPU,
to show the performance gain of the proposed fusion method, all evaluations compare the same
execution with and without the fusion algorithm. To this end, each experiment is repeated once
with fusion enabled, and once with fusion disabled.

As previously mentioned, all experiments are also performed on each platform with an
increasing job count that goes from 1 parallel job up to 100. However, not all platforms have
enough GPU memory to contain the metadata necessary for 100 parallel jobs. In those cases, the
job count is incremented until the GPU memory is exhausted. In the evaluations, the platform
with the smallest GPU memory (8GB) is able to run 65 instances of the most demanding job
(memory-wise) in parallel. Experiments were also repeated to ensure spikes and anomalies are
not temporal.

Two distinct platforms were used to perform our extensive evaluations. The first, a scientific
computation server containing one instance of NVIDIA A30 GPU with 32 GB of GPU RAM, Intel
Xeon Gold 6258R CPU (2.70GHz) with 32 GB of RAM. The second, an Amazon Web Services
(AWS) G5.xlarge instance35 with one instance of NVIDIA A10 GPU with 24 GB of GPU RAM,
AMD EPYC 7R32 CPU with 16 GB of RAM.

34Chen et al., “Krill: a compiler and runtime system for concurrent graph processing”; Pan and Li, “Congra: Towards
efficient processing of concurrent graph queries on shared-memory machines”.

35Amazon Web Services. Amazon EC2 G5 Instances. https://aws.amazon.com/ec2/instance-types/g5/. 2023.

SparCity 17

https://aws.amazon.com/ec2/instance-types/g5/

Table 5 Graph processing algorithms selected and implemented as jobs for evaluation.

Algorithm Description
1 BFS Breadth first search
2 SSSP Single-source shortest path
3 PageRank (PR) Measuring relative importance
4 Label Propagation (LP) Labelling and clustering of a graph

Table 6 Job sets used in experiments and evaluations.

Job Set Algorithms
Homo 1 BFS X N
Homo 2 SSSP X N
Homo 3 PR X N
Homo 4 LP X N

NVIDIA driver version 510.47.03 and CUDA version 12.1 were used. The same source code
was used on all instances, and compiled without any flags, which is the -O3 optimization flag by
default on the NVIDIA Compiler (nvcc).36 Table 7 summarizes the platforms used in experiments
and evaluations.

2.2.3 results

In this section, several experiments used to analyze the performance of the proposed automated
fusion method in different job sets are presented. For the purpose of brevity and clarity only a
slide of runtime performance of job sets are depicted in Figure 9, 10, 11.

Figure 9 illustrates runtime performance of homogeneous job set Homo1 for all input graphs
with increasing job counts starting from 1 up to 100, executed in parallel. It is noteworthy
to mention that the speedup starts when the job count is over 20. The average speedup and
slowdown for different input graphs ranges from 10% speedup for Higgs (12.5% for job counts
over 20) to 2.5% slowdown for Youtube (3.1% for job counts over 20). The job set Homo2 which
include multiple number of SSSPs yield very similar results and for the purpose of brevity is not
included.

Figure 9 Homogeneous job set Homo1 speedup result

As depicted in Figure 10 , the speedup for the job set of Homo3 starts when the job count
is over 25 with the notable exception of Youtube in which speedup starts when the number of
jobs are over 60. Different input graphs have varying average speedup/slowdowns ranging from

36Nvidia Corporation. NVIDIA CUDA Compiler Driver NVCC. 2022. url: https://docs.nvidia.com/datacenter/
tesla/pdf/NVIDIA_Data_Center_GPU_Driver_Release_Notes_510_v1.0.pdf.

SparCity 18

https://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_Data_Center_GPU_Driver_Release_Notes_510_v1.0.pdf
https://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_Data_Center_GPU_Driver_Release_Notes_510_v1.0.pdf

Table 7 Platforms used for evaluations.

Name GPU + RAM CPU + RAM
Intel Cascade Lake Server NVIDIA A30 32GB Intel Xeon 6258R 32GB

AWS G5.xlarge NVIDIA A10 24GB AMD EPYC 7R32 16GB

Figure 10 Homogeneous job set Homo3 speedup result

2%-3% of average speedup for Higgs and Wiki-Talk, 2% of average slowdown for Youtube and
8%-12% of speedup for Pokec depending on the job count.

The job set Homo4 as depicted in Figure 11, has consistent slowdowns with the noteworthy
exception of Youtube graph that yields 5.5% average speedup. For the rest of input graphs this
job set has varying slowdowns ranging from 2% to 8%.

As immediately observable in the figures, not all runtimes with fusion are better than their
counterparts without fusion. This slowdown is specially pronounced when job count is small
Additionally, slowdown is observed in certain algorithms such as Label Propagation on graphs
that have a significantly large number of edges compared to the number of nodes, such as Higgs,
Youtube and LiveJournal Figure 9, 10, 11.

As apparent in the figures, the runtime curve for fused jobs are generally below the curve for
jobs without fusion for almost all graphs and algorithms in homogeneous job sets. This result
is expected, and can be because similar jobs are more likely to have similar access patterns,37

leading to similar frontier sets (both in size and shape) resulting in reduced memory access and
improved runtime.

A notable exception to this improved performance is the Label Propagation algorithm in
Figure 11.Most of the fusion curves have decreased performance in contrast with non-fusion
curves, with the notable exception of the Youtube graph. This slowdown is because the Label
Propagation algorithm needs to iterate all edges of each frontier node, to find the intersection of
that node’s neighbors with the starting node. As each node may have hundreds of thousands of
edges, cache utilization quickly becomes ineffective when many concurrent LP jobs are executed,
resulting in degraded performance.

Another visible anomaly is the spikes in runtime performance of Label Propagation on the
Youtube graph (Figure 11). The fusion curve seems to be generally below the non-fusion curve,
but has several spikes that sometimes go above the non-fusion curve (circa job count 70). Our
hypothesis is that the shared frontier becomes too large to effectively utilize GPU memory cache at
this job count, and as such fusion adds overhead instead of improving performance. To ascertain
that these anomalous spikes are not due to temporal evaluation results, these experiments were
repeated three more times.

37Chen et al., “Krill: a compiler and runtime system for concurrent graph processing”.

SparCity 19

Figure 11 Homogeneous job set Homo4 speedup result

As mentioned before, for job counts below 20, there is usually negative speedup, as there isn’t
a significant shared frontier to fuse jobs together. However, as job count goes beyond 20 and
towards 50, speedup increases significantly. Around 55 job count is where speedup starts to dip,
although the average speedup is still about 10% thereafter.

Fusion Overhead. To measure overhead incurred by GFuse, it is first important to analyze how
fusion can cause overhead. There are two aspects by which fusion adds overhead to the running
time of jobs. The first is the running time of the fusion algorithm itself. The proposed framework
uses two GPU kernels and a minimal CPU function – all three of which are heavily optimized
– to perform kernel fusion. As such, the overhead caused by the fusion algorithm is generally
negligible, averaging 61 milliseconds in contrast with an average job running time of 1.84 seconds
on the first platform, 90 milliseconds in contrast with an average running time of 9.57 seconds on
the second platform and 99 milliseconds in contrast with an average running time of 6.81 seconds
on the third platform, resulting in 3.3%, 0.9% and 1.5% average fusion algorithm overheads.

Note that as apparent from Figure 9 and Figure 10, as the number of jobs and the overall exe-
cution time increases, the fusion algorithm overhead as a proportion reduces. This proportional
reduction is the reason behind an average of 3.3% average fusion algorithm overhead on platform
1, that reduces to less than 1% in platform 2, which has a larger memory and supports many
more parallel jobs.

The second aspect by which fusion adds overhead to the running time is by increasing the
number of iterations required to finish all jobs, as certain jobs are deactivated and stalled by the
fusion algorithm to maximize the active shared frontier. For example, running 100 homogeneous
SSSP jobs on the Youtube graph with fusion, requires 42 iterations to complete, whereas the same
job without fusion finishes in only 21 iterations. This overhead is significantly harder to measure
and predict, as it is based on the shared frontier of jobs at runtime, depending on the runtime
parameters of each job.

SparCity 20

3 sparcity tools

3.1 sparse-aware roofline modeling

Sparse computation has been a topic of research for several years, due to its importance in fields
such as graph analytics, artificial intelligence, data science and scientific computation.38 Data
in these applications is mostly comprised of zeros, thus it is represented with sparse matrices,
where only non-zero elements are stored using diverse formats to reduce memory footprint.
However, even for the most widely used sparse algorithms and formats, such as Sparse Matrix
Vector Multiplication (SpMV) with Compressed Sparse Row (CSR), it is not trivial to identify the
bottlenecks and improve their performance in current computing systems. This is mainly due to
the diverse impact to performance, power consumption and energy efficiency when unpredictable
and irregular memory access patterns dictated by the specific sparse matrix characteristics are
coupled with increasing complexity of modern hardware.

For this purpose, performance models can be used to identify the main execution bottlenecks
and give hints about optimization paths. One simple and insightful model that facilitates this
process is Cache-Aware Roofline Model (CARM).39 CARM offers intuitive analysis on the appli-
cation bottlenecks through visual representation of the upper-bounds of the micro-architecture
and application performance. However, when tackling sparse computation, this simplicity can
lead to inaccurate characterization and optimization hints, due to the inability of the model to
consider the realistic requirements of this type of computations, e.g., irregularity and indirect
memory accesses.

In order to improve the applicability of CARM40 to sparse computations, we proposed a
novel micro-benchmarking methodology supported by a tool to achieve accurate and precise
performance upper-bounds of current CPUs when performing sparse computations. The pro-
posed methodology is used to build a sparse-aware CARM, which represent the limitations of
the micro-architecture for the SpMV computation in a more accurate way. Rooflines are obtained
based in micro-benchmarking with synthetic sparse matrices, specifically constructed to exercise
the various component of the architecture. The proposed model retains the simplicity of the
original model by relating the application performance with the hardware upper-bounds, while
it significantly improves its insightfulness and applicability by providing additional hints for
sparse-specific scenarios, such as possible reuse of involved data structures.

The proposed methodology to experimentally assess the SpMV performance upper-bounds
takes in account two key aspects: the SpMV algorithm implementation and the disposition of
non-zero elements in the sparse matrix. For the former, we focus our analysis on the hand-tuned
SpMV kernel, developed in x86 assembly and operating on the sparse matrices in the most
commonly used CSR format. For the latter, we developed a set of synthetic sparse matrices to
exercise different memory access and data reuse patterns with the aim of fully exploiting the
memory hierarchy and compute resources of modern CPUs. These achievements are extensively
documented in Deliverables 1.2, 1.4, 1.5 and 4.2.

This methodology was experimentally verified in a computing platform with an octa-core
Intel i7-7820X and Linux CentOS 7.5.1804, by varying the number of rows, non-zeros per row
and ensuring the all data structures involved in SpMV fit in the L1 cache. It was observed that

38Xiaoping Li, Yadi Wang, and Rubén Ruiz. “A survey on sparse learning models for feature selection”. IEEE
transactions on cybernetics 52.3 (2020), pp. 1642–1660.

39Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. “Cache-aware roofline model: Upgrading the loft”. IEEE
Computer Architecture Letters 13.1 (2013), pp. 21–24.

40Ibid.

SparCity 21

the lowest bandwidth was achieved for the matrix with 512 rows and 1 NPR (512×1), which
increases towards 8 NPR, thus utilizing the SpMV algorithm segments with higher unrolling
factor, reaching a maximum for the 128×16 matrix. To extend this evaluation to other memory
levels, two approaches are adopted that allow preserving the locality of x vector in a specific level:
i) increase the number of rows while maintaining the number of columns (e.g., with 16 columns
x is in L1 cache); and ii) change the number of columns to provoke different locality of x vector.

0

50

100

150

200

250

4K 32K 256K 2M 16M 128M 1G

B
an

dw
id

th
 (

G
B

/s
)

Memory Utilized (Bytes)

X Locality in L1

X Locality in L2

X Locality in DRAM

Arithmetic Intensity [Flops/Byte]
Pe

rf
or

m
an

ce
 [

G
Fl

op
s/

s]

L3: 65.58 GB/s

DRAM: 16.91 GB/s

0.1

AImin AImax

0.2 0.3 0.6 1

1

10

100 CARM Proposed

 L1: 206.7 GB/s

 L2: 172.43 GB/s

interpretation in
CARM

interpretation in
proposed model CARM

Proposed

Figure 12 Bandwidth variation (left) and sparse CARM (right) for multi-threaded SpMV.

Figure 12 (left) shows the bandwidth variation for multi-threaded SpMV execution, as a
function of the memory occupied by x and y vectors, and all CSR structures. For a given x

vector locality, it can be seen that increasing the data size until exceeding the capacity of each
memory level, causes a reduction in the maximum attainable bandwidth, since deeper memory
levels are associated with higher access latency. The highest memory bandwidth is attained when
the x vector fits in the L1 cache (for 16 columns, 206.7GB/s). When testing scenarios where x

fits in other memory levels, e.g., in the L2 cache with 8702 columns, the resulting attainable L2

bandwidth suffers a bandwidth reduction. This difference in bandwidth is also noticeable for
deeper memory levels (such as L3 and DRAM), where the increased access latency significantly
reduces the impact of the locality of the x vector on overall bandwidth.

Based on these findings, a novel sparse-aware CARM is proposed, which is capable of
more accurately characterizing sparse computation kernels and their ability to exploit the micro-
architecture compute and memory resources, when compared to the state-of-the-art CARM.41

Sparse-aware CARM is derived based on the bandwidth evaluation conducted and presented in
Fig. 12 (right), depicting the performance upper-bounds of the SpMV kernel, when the x vector
locality is preserved in the L1 cache.

When compared to the original CARM roofs (see dashed roofs in Fig. 12), the proposed
sparse-aware CARM (solid roofs) achieves lower maximum attainable performance for the L1

cache. This is mainly due to indirect accesses to the x vector and memory accesses to multiple
arrays, which prevent the theoretical L1 bandwidth to be reached. However, proposed L2 roof is
higher than the one in original CARM, since the locality of x vector is preserved in the L1 cache
(original CARM L2 roof is obtained by maintaining locality only in L2 when streaming the data).
Despite the x vector L1 data locality, the L3 and DRAM rooflines only slightly differ to the ones
in original CARM, which indicates that indirect accesses with higher latency to the cols vector
(stored in L3/DRAM) diminish the potential performance benefits from x vector L1 locality.

41Ilic, Pratas, and Sousa, “Cache-aware roofline model: Upgrading the loft”.

SparCity 22

AImaxAImin

 L1 Roofline

 L2 Roofline

 L3 Roofline

 DRAM Roofline

512x1

512x2
256x4

256x8

128x16 90x32 32x64
16x1281x2048

2x8704
4x8704

2x294912
3x294912

3x3145728

Arithmetic Intensity [Flops/Byte]

Pe
rf

or
m

an
ce

 [
G

Fl
op

s/
s]

0.13

1

0.15 0.17 0.19

Figure 13 AI variation with NNZ per row.

14MbX
32x64

best

worst

208KbX
32x64

best

worst

64KbX
32x64

4KbX 32x64

DRAM Performance Range

L3 Range

AImaxAImin

 L1 Roofline

 L2 Roofline

 L3 Roofline

 DRAM Roofline

Arithmetic Intensity [Flops/Byte]

Pe
rf

or
m

an
ce

 [
G

Fl
op

s/
s]

0.13

1

0.15 0.17

10

Figure 14 Best-Worst cases in Sparse-CARM.

Given the different micro-benchmarking and model construction principles, the proposed
model also has fundamentally different interpretation methodology when compared to the orig-
inal CARM. As shown in Fig. 12 (see gray dot with dashed arrow), in the original CARM the
execution bottlenecks and optimization hints are derived by observing all the roofs intersected
at the application AI, always suggesting the potential to exploit the maximum architecture per-
formance (either corresponding to the L1 bandwidth or FP performance). In other words, the
optimization strategy is based on surpassing all roofs positioned above the application point.
Although this method might be adequate for some general-purpose kernels with working set
potentially fitting into L1 cache, it is certainly not sufficient to provide in-depth characterization
of the considered sparse kernel.

In contrast, the rooflines in the proposed model are representative of both micro-architecture
and sparse application features, since they are built via bandwidth micro-benchmarking where
all data structures are stored in the respective memory level and accessed in a sequential and
coalesced manner. Hence, for a warm-cache scenario, the maximum attainable performance
with a sparse matrix whose data structures only fit in a specific cache level cannot exceed the
performance of the corresponding memory roofline in the sparse-aware CARM (i.e., the roofline
immediately above the application point, as shown in Fig. 12). As such, the optimization path
is restricted to matrix reordering, where row and column permutations may yield improved
accesses and better reuse of x vector data, thus providing higher performance.

The vertically dotted lines and shaded region in sparse-aware CARM, shown in Fig. 12,
represent the theoretical Arithmetic Intensity (AI) range of the x86 SpMV kernel. Figure 13

presents the experimental evaluation of this range by relying on a set of dense synthetic matrices
with different dimensions. As elaborated before, the minimum AI is achieved with sparse matrices
of 1 column (AI=0.125), then the AI shifts to the right as the Number of Non-Zeros (NNZ) per row
increases, until reaching near-theoretical AI maximum with high column counts (AI≈0.16666).

Since reordering is the most important optimization approach to increase the SpMV perfor-
mance (and potentially improve the x vector locality), we focus first on uncovering the realistically
attainable ranges of performance improvements via reordering. For this, we create pairs of syn-
thetic sparse matrices to mimic different execution scenarios: i) worst case matrix, which aims at
minimizing the reuse of the x vector; and ii) best case matrix, which attempts to maximize the
x locality. These matrices are obtained through a specific row and column permutation with
dimensions and access patterns dictated by the cache specifics, and contain a set of diagonal

SparCity 23

fr
ee

sc
al

e
pa

te
nt

s

to
rs

o1
St

an
fo

rd

ns3Da

po
is

so
n3

Db
sm

e

m
ix

ta
nk

ss
Fu

llC
hi

p

w
b-

ed
u

original
RCM

GrayRO
ND
AMD

Patoh:cutnet
Patoh:connectivity

AImin
AImax

 L1: 206.7 GB/s

 L2: 172.43 GB/s

L3: 65.58 GB/s

DRAM: 16.91 GB/s

Arithmetic Intensity [Flops/Byte]

Pe
rf

or
m

an
ce

 [G
Fl

op
s/

s]

0.14

1

0.16

10

Figure 15 Matrix reordering

1.3 × 10 11.4 × 10 11.5 × 10 11.6 × 10 11.7 × 10 11.8 × 10 11.9 × 10 12 × 10 1

Arithmetic Intensity [Flops/Byte]

101

2 × 100

3 × 100

4 × 100

6 × 100

Pe
rfo

rm
an

ce
 [G

Fl
op

s/
s]

L3 Roofline 8C
DRAM Roofline 8C
L3 Roofline 6C
DRAM Roofline 6C
Freescale1
Freescale1 AMD

Figure 16 Freescale in 6C/8C models.

Figure 17 Torso1 in 5C/1C models.

dense blocks (each assigned to a specific core).42 Fig. 14 presents the evaluation of several best
and worst case matrices in the sparse-aware CARM. As it can be seen, performance improvements
are achieved between the worst and the best cases for all memory levels, being the most notable
for the groups of matrices that fit in DRAM (14MbX), L3 (208KbX) and L2 (64KbX), which may
yield speedups of 2.13×, 1.3× and 1.23×, respectively.

Reordering real matrices: As presented in Fig. 15, we extend the experimental evaluation to a
set of 11 real sparse matrices from Suite Sparse, to which up to six different reordering algorithms
are applied, i.e., RCM, AMD, ND, cutnet and connectivity from Patoh library and GrayRO.43

This set of matrices are real, general and non-complex, with diverse number of rows, columns
and non-zero elements, covering a wide range of execution scenarios. As presented in Fig. 15,
some reordering methods provide performance improvements for certain matrices (e.g., all for
poisson3Db, all except GrayRO for freescale), but they might provoke performance degradation
(e.g., all for torso1 or RCM for wb-edu). This effect is not surprising since some reordering
methods are not developed with data locality in mind, e.g., RCM is a fill reducing method.

Another noteworthy observation is that all considered matrices are placed within the modeled

42Afonso Silva Mendes Coutinho. “CARM-based approach for sparse computation characterisation”. MA thesis.
Instituto Superior Técnico, Universidade de Lisboa, 2022.

43Ibid.

SparCity 24

AI range, but not all of them are positioned within the best-worst case performance ranges (see
grey regions below the rooflines). This is mainly due to the impact of reordering algorithms
to the load balancing in multi-threaded execution. For example, AMD improves the average
core utilization for freescale1 from 6.19 (original) to 7.98, while RCM provokes its reduction
for torso1 from 5.32 to 1.46. This explains their characterization in the sparse-aware CARM,
since freescale1-AMD obtains a speedup of 1.32×, while torso1-RCM incurs a slowdown of
0.26×. However, unbalanced execution may also impact the quality of insights derived from
the sparse-aware CARM, since the application points are analyzed against the roofs that are not
representative of that execution scenario. For example, in Fig. 15, torso1-RCM execution is no
longer strictly associated with the x vector memory accesses across all 8 cores in parallel.

Adapted sparse-aware CARM: To counter-balance this issue by retaining the cache locality
focus of the sparse-aware CARM, its analysis is extended to consider different core utilizations.
These variants of the proposed model are obtained by applying the previously elaborated micro-
benchmarking methodology to different number of cores (lower core counts should deliver lower
memory bandwidth). This adapted sparse-aware CARM allows to improve the model insight-
fulness and isolate the cache locality analysis, thus providing the means to characterize the
performance variations due to changes in x accesses and minimize the impact of load balancing.

For example, in Fig. 15, the initial 8-core sparse-aware CARM characterization suggests that
freescale1-AMD achieves significantly better DRAM bandwidth utilization and data locality for
x vector accesses. However, as presented in Fig. 16, the characterization in adapted sparse-aware
CARM (based on the average core utilization), reveals that both original and AMD freescale1

matrices are placed in the same relative position regarding the DRAM roof. This suggests that
there are no changes in the main execution bottlenecks after reordering, which fully corroborates
with the conducted VTune Top-Down analysis.44 Similar discrepancy in analysis can be observed
in Fig. 17, where the adapted sparse-aware CARM is applied for characterization of torso1 RCM,
which showcases the locality improvements due to reduced relative distance to its respective roof.

Overall, the adapted sparse-aware CARM offers additional insights on where the application
optimization should focus. For example, if a specific matrix is represented on top of a memory
roof that corresponds to its average core utilization, the next optimization step should focus on
improving the load balancing (if the core utilization is lower than the maximum). If the application
attains good average core utilization, but it is positioned significantly below the corresponding
roof, then the techniques to improve the accesses to the x vector can be applied. Finally, in the
case of a kernel that is represented below the roof in a model that does not correspond to its
maximum core utilization, further optimization can be focused on both accesses to the x vector
and load balancing.

Optimization for energy efficiency: We also investigate applicability of the proposed sparse-
aware CARM methodology to explore the optimization space for improving the SpMV energy
efficiency. For this purpose, the realistic upper-bounds for performance, power consumption and
energy-efficiency are obtained by running the previously introduced set of synthetic matrices
with increasing NNZ per row to iterate over the complete AI range and for a range of core
frequencies. To validate model usability, the previously tested freescale1-AMD and ss-RCM
are selected because they attain near perfect load balancing, with core utilization close to the
maximum, thus allowing to showcase the benefits of the proposed strategy by limiting the impact
of other execution factors.

44Coutinho, “CARM-based approach for sparse computation characterisation”.

SparCity 25

Arithmetic Intensity [Flops/Byte]

Pe
rf

or
m

an
ce

[G

Fl
op

s/
s]

2

3

0.152 0.156 0.160 0.164

30

50

70

Po
w

er
 [

W
]

Arithmetic Intensity [Flops/Byte]

0.152 0.156 0.160 0.164

En
er

gy
-e

ffi
ci

en
cy

[G

Fl
op

s/
J] 0.
06

0.
04

0.
02

Arithmetic Intensity [Flops/Byte]

0.152 0.156 0.160 0.164

DRAM@3.6GHz
@3.1GHz
@2.4GHz
@1.5GHz

DRAM@3.6GHz

DRAM@3.1GHz

DRAM@2.4GHz

DRAM@1.5GHz

DRAM@1.5GHz
DRAM@2.4GHz
DRAM@3.1GHz
DRAM@3.6GHz

freescale1 AMD ss RCM freescale1 AMD ss RCM freescale1 AMD ss RCM

Figure 18 SpMV performance, power and energy-efficiency variation with core frequency.

Figure 18 presents the performance, power and energy efficiency analysis of these matrices
for different core frequencies, by relying on the curves obtained for the memory levels which
limit their performance (DRAM in this case). As it can be observed, the reordered matrices
achieve close-to-modeled values in all three domain (see the difference between the point and
the corresponding curve). Since the matrices are DRAM-bound, there is no significant variation
in performance for different core frequencies (DRAM is clocked in a separate domain), while
the minimum power consumption is obtained for the minimum frequency. As such, similar
performance with reduced power results in the positive implications regarding energy efficiency,
which is the highest for the minimum frequency.

3.2 a64fx cache partitioning profiler

The sector cache is a feature found in the Fujitsu A64FX CPU, designed to enhance cache perfor-
mance by allowing for hardware-supported partitioning of the L1 and L2 caches. This feature
enables the CPU to divide the cache into sectors, each with its own set of cache lines, providing
more control over data placement and cache utilization. By partitioning the cache into sectors,
the sector cache feature allows for better management of data placement based on access patterns
and memory requirements. This can help reduce cache pollution, improve cache hit rates, and
optimize data access for specific applications or workloads.

In the context of SpMV on the A64FX CPU, the sector cache feature can be leveraged to
improve performance by controlling the placement of data related to the computation, optimizing
cache utilization, reduce cache misses, and enhance overall performance in SpMV operations
with irregular and indirect memory access patterns.

We present a performance modelling tool45 based on reuse analysis to describe cache behavior
in SpMV. Our tool introduces a novel method for modelling cache behavior in SpMV on the Fu-
jitsu A64FX CPU, considering the sparsity pattern and dimensions of the input matrix. By analyz-
ing the impact of the sector cache on cache misses and performance under various configurations,
we demonstrate the effectiveness of the sector cache in reducing cache pollution and improving
performance for SpMV operations. Additionally, we highlight the significance of understanding
cache behavior in optimizing performance for sparse matrix computations on modern architec-
tures like the A64FX. The tool is available under https://github.com/sparcityeu/spmvrd.

Key findings include the classification of matrices based on dimensions to determine the
benefits of using the sector cache, detailed measurements showing a correlation between reduced
demand cache misses and speedup in SpMV, and the proposal of a method for accurate cache

45Sergej Breiter, James D Trotter, and Karl Fürlinger. “Modelling Data Locality of Sparse Matrix-Vector Multiplication
on the A64FX”. Proceedings of the SC’23 Workshops of The International Conference on High Performance Computing, Network,
Storage, and Analysis. 2023, pp. 1334–1342; Sergej Breiter et al. “A Profiling-Based Approach to Cache Partitioning of
Program Data”. International Conference on Parallel and Distributed Computing: Applications and Technologies. Springer.
2022, pp. 453–463.

SparCity 26

https://github.com/sparcityeu/spmvrd

0 1

2

3 4

5 6

(a)

(b)
a[0] a[1]

a[2]

a[3] a[4]

a[5]

col[0] x[1] col[1] x[2]

col[2] x[0]

col[3] x[2] col[4] x[3]

col[5] x[1] a[6] col[6] x[3]

row[0]

row[2]

row[3]

row[4]

y[0]

y[1]

y[2]

y[3]

Line 0

x[0-1]

Line 1

x[2-3]

(c) Line 2

y[0-1]

Line 3

y[2-3]

Line 4

a[0-1]

Line 5 Line 6

a[2-3] a[4-5]

Line 7

a[6]

Line 8

col[0-3]

Line 9

Line 10

col[4-6]

row[0-1]

Line 11

row[2-3]

Line 12

row[4]

row[1]

Figure 19 (a) Sparse matrix pattern with 7 nonzeros (b) Access pattern of CSR SpMV (c) Cache memory
layout of involved data structures x, y, a, colidx and rowptr assuming a cache line size of 16 bytes and
alignment to cache line boundaries.

miss predictions incorporating cache partitioning effects. We conclude that the sector cache can
significantly enhance performance in SpMV on the A64FX processor.

Functionality The method proposed in the paper ”Modelling Data Locality of Sparse Matrix-
Vector Multiplication on the A64FX” to model cache behavior in sparse matrix-vector multipli-
cation (SpMV) on the Fujitsu A64FX CPU is based on reuse analysis. This method aims to
provide a comprehensive understanding of cache behavior by considering the sparsity pattern
and dimensions of the input matrix.

The method utilizes reuse analysis to assess cache behavior in SpMV computations. By
analyzing the reuse distance from the matrix sparsity pattern, the method can predict cache
misses accurately, particularly focusing on the challenging aspect of estimating cache misses due
to references to the x-vector, whose locality depends on the matrix sparsity pattern.

Fig. 19 shows an example of the approach described above. The access pattern of the SpMV
with an example matrix (Fig. 19 (a)) is shown in Fig. 19 (b). Cache line numbers assigned to the
elements of the data structures are shown in Fig. 19 (c). Each data structure is assumed to be
aligned to a cache line boundary (i.e., 256 bytes for the A64FX). Finally, reuse distances can be
computed from the resulting access pattern.

Accuracy The accuracy of the model in predicting cache behavior in SpMV on the A64FX CPU
is a crucial aspect evaluated in the study. The model’s accuracy is assessed based on its ability
to predict cache misses resulting from irregular and indirect memory access patterns inherent in
SpMV computations, particularly focusing on the challenging aspect of estimating cache misses
due to references to the x-vector.

1. Evaluation Metrics: The accuracy of the model is typically evaluated using metrics such as
Mean Absolute Percentage Error (MAPE) and Standard Deviation of the Absolute Percent-
age Error. These metrics provide insights into the deviation between the predicted cache
misses and the actual cache misses observed during performance measurements.

2. Comparison with Performance Events: To validate the accuracy of the model, predictions of
cache misses due to x-vector accesses are compared with performance event measurements.

SparCity 27

This comparison helps in assessing the model’s ability to predict cache behavior accurately
and optimize cache utilization for improved performance in SpMV operations.

3. Factors Influencing Accuracy: The accuracy of the model may depend on various factors,
including the complexity of the sparsity pattern, the dimensions of the input matrix, and the
effectiveness of the sector cache configurations in reducing cache pollution. Understanding
these factors is essential for evaluating the model’s accuracy in predicting cache behavior.

4. Error Analysis: The model’s accuracy is further analyzed by examining cases where the
prediction error is higher, identifying factors that contribute to inaccuracies in cache miss
predictions. By analyzing these errors, researchers can refine the model and improve its
accuracy in predicting cache behavior for SpMV on the A64FX CPU.

We evaluated the accuracy on a set of 490 matrices from the suite sparse matrix collection
with an average prediction error for L2 cache misses of < 3 % in sequential SpMV and < 4 %
in parallel SpMV using 48 threads. These low error rates indicate that the model can effectively
predict cache behavior in SpMV computations on the A64FX CPU.

3.3 supertwin

To our knowledge, there exists no work on using digital twins to model HPC systems; the
literature can be investigated in three contexts; monitoring frameworks, profiling methods, and
digital twin ontologies. To systematically collect and analyze information from performance
metric sources, several frameworks have been developed, e.g., LDMS,46 HPC-Toolkit,47 Ganglia,48

Nagios,49 and PerfAugur.50 E2EWatch51 specializes in system-wide monitoring using Linux
metrics and focuses on anomaly classification and detection. ClusterCockpit,52 a more recent
tool, reports performance metrics from distributed systems to InfluxDB and offers monitoring
dashboards and job history queries. However, these tools have limitations, such as supporting
only preselected, a fixed set of metrics and lacking a comprehensive knowledge representation
and linked-data capabilities.

Performance Co-Pilot (PCP)53 is a metric collection, transport, and storage tool that can be
configured to sample every available metric counter on hardware and kernel, and energy usage
of a system by Running Average Power Limit (RAPL)54 and perf interfaces. It supports varying

46Brandt. Lightweight Distributed Metric Service (LDMS): Run-time Resource Utilization Monitoring. English. Tech. rep.
SAND2013-6521C. Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM),
Albuquerque, NM (United States), 2013. url: https://www.osti.gov/biblio/1106397 (visited on 09/27/2021);
Agelastos. The Lightweight Distributed Metric Service: A Scalable Infrastructure for Continuous Monitoring of Large Scale Com-
puting Systems and Applications. English. Tech. rep. SAND2014-19868C. Sandia National Lab. (SNL-NM), Albuquerque,
NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States), 2014. doi: 10.1109/SC.2014.18.
url: https://www.osti.gov/biblio/1315267 (visited on 09/27/2021).

47Adhianto. “HPCTOOLKIT: Tools for Performance Analysis of Optimized Parallel Programs
Http://Hpctoolkit.Org”. Concurr. Comput.: Pract. Exper. 22.6 (2010), pp. 685–701. issn: 1532-0626.

48Ganglia. Monitoring system. 2022. url: http://ganglia.sourceforge.net/ (visited on 12/12/2022).
49Nagios. Nagios. https://www.nagios.org/. Accessed: 2022-12-12. 2022.
50Roy. “PerfAugur: Robust diagnostics for performance anomalies in cloud services”. 2015 IEEE 31st International

Conference on Data Engineering. 2015, pp. 1167–1178. doi: 10.1109/ICDE.2015.7113365.
51Aksar. “E2EWatch: An End-to-End Anomaly Diagnosis Framework for Production HPC Systems””. Euro-Par 2021:

Parallel Processing. Springer International Publishing, 2021, pp. 70–85.
52Cluster Cockpit. https://www.clustercockpit.org/. Accessed on 30 Sep 2023.
53Performance Co-Pilot. https://pcp.io/. Accessed on 30 Sep 2023.
54Vincent M. Weaver et al. “Measuring Energy and Power with PAPI”. 2012 41st International Conference on Parallel

Processing Workshops. 2012, pp. 262–268. doi: 10.1109/ICPPW.2012.39.

SparCity 28

https://www.osti.gov/biblio/1106397
https://doi.org/10.1109/SC.2014.18
https://www.osti.gov/biblio/1315267
http://ganglia.sourceforge.net/
https://www.nagios.org/
https://doi.org/10.1109/ICDE.2015.7113365
https://www.clustercockpit.org/
https://pcp.io/
https://doi.org/10.1109/ICPPW.2012.39

sampling rates with negligible overhead, without the code compilation and instrumentation.
SuperTwin leverages PCP to offer a robust and full-fledged analysis framework capable of
enabling the creation of digital twins.

Digital twins for HPC systems differ from those for other physical entities due to the abun-
dance of sensors, with each sensor, such as a hardware register or PMU, capable of reporting
thousands of metrics through re-programming. Treating processes as unique components further
adds to the heterogeneity within the HPC system. DTDL (Digital Twins Definition Language),
a derivation of JSON-LD, consists of six metamodel classes that explain the context of digital
twin components. These classes encompass Interface, Telemetry, Properties, Commands, Relationship,
and various data schemes. In DTDL, each Interface represents a standalone (sub)twin, encom-
passing descriptions of its Properties, Telemetry, and Relationships. SuperTwin combines these
components to hierarchically model an HPC system’s structure, considering each component
(e.g., node, socket, CPU, GPU, memory subsystem, etc.) as a distinct digital twin. The notion
that each interface stands as an individual (sub)twin is a core principle extensively leveraged in
SuperTwin.

The Roofline Model,55 and its numerous variations,56 including the Cache-Aware Roofline
Model (CARM),57 have emerged as invaluable tools to evaluate the computational capabilities
of contemporary processors and pinpointing potential performance limitations.58 SuperTwin

incorporates CARM due to its ability to accurately characterize the entire system by considering
all memory levels. However, the current literature primarily relies on a single tool, adCARM,59

for CARM generation, which is tailored for Intel architectures, leaving a gap in support for AMD
systems. In this work, an extension is introduced to support AMD systems under the SuperTwin

framework. Furthermore, this work also addresses another gap in the area of Roofline modeling in
general; real-time CARM visualization during execution. SuperTwin introduces the novel tool,
the live-CARM panel, which takes performance-counter data and automatically calculates CARM-
related metrics, displaying them in conjunction with other metrics to give users an immediate
idea of how their application performs relative to architectural limits. This panel is a prime
example of what can be achieved by leveraging all the capabilities of SuperTwin.

SuperTwin relies on a comprehensive knowledge base and linked-data capabilities. The
Knowledge Base (KB), is used by each SuperTwin function as a parameter. It is dynamic,
evolving to capture and link additional telemetry and metadata as they become available. This
allows the twin to continue its operations in a live fashion without a procedural change and

55Nan Ding and Samuel Williams. “An Instruction Roofline Model for GPUs”. 2019 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS). 2019, pp. 7–18. doi: 10.1109/PMBS49563.
2019.00007.

56Tuomas Koskela et al. “A novel multi-level integrated roofline model approach for performance characterization”.
High Performance Computing: 33rd International Conference, ISC High Performance 2018, Frankfurt, Germany, June 24-28,
2018, Proceedings 33. Springer. 2018, pp. 226–245; Jee Whan Choi et al. “A roofline model of energy”. 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing. IEEE. 2013, pp. 661–672; Aleksandar Ilic, Frederico Pratas,
and Leonel Sousa. “Beyond the roofline: Cache-aware power and energy-efficiency modeling for multi-cores”. IEEE
Transactions on Computers 66.1 (2016), pp. 52–58.

57Ilic, Pratas, and Sousa, “Cache-aware roofline model: Upgrading the loft”.
58Douglas Doerfler et al. “Applying the roofline performance model to the intel xeon phi knights landing processor”.

High Performance Computing: ISC High Performance 2016 International Workshops, ExaComm, E-MuCoCoS, HPC-IODC,
IXPUG, IWOPH, Pˆ 3MA, VHPC, WOPSSS, Frankfurt, Germany, June 19–23, 2016, Revised Selected Papers 31. Springer.
2016, pp. 339–353; Didem Unat et al. “ExaSAT: An exascale co-design tool for performance modeling”. The International
Journal of High Performance Computing Applications 29.2 (2015), pp. 209–232. doi: 10.1177/1094342014568690. url:
https://doi.org/10.1177/1094342014568690.

59Diogo Marques et al. “Application-driven cache-aware roofline model”. Future Generation Computer Systems 107

(2020), pp. 257–273.

SparCity 29

https://doi.org/10.1109/PMBS49563.2019.00007
https://doi.org/10.1109/PMBS49563.2019.00007
https://doi.org/10.1177/1094342014568690
https://doi.org/10.1177/1094342014568690

@id:dtmi:dt:compute0:socket0;1
@type: Interface

@id:dtmi:dt:compute0:socket1;1
@type: Interface

dtmi:dt:compute1:system;1
@type: Interface

@id:dtmi:dt:cluster0;1

dtmi:dt:compute0:system;1
@type: Interface

@id:"dtmi:dt:fedora:cache54:telemetry1997;1"
@type: HWTelemetry
contents:​[
name:"metric101",
PMUName:"CYCLE_ACTIVITY:STALLS_L2_MISS",
SamplerName: "perfevent.hwcounters.CYCLE_ACTIVITY_STALLS_L2_MISS",
DBName:"perfevent_hwcounters_CYCLE_ACTIVITY_STALLS_L2_MISS_value",
FieldName: "_cpu54"]

@id:dtmi:dt:compute0:core19;1
@type: Interface

@id:dtmi:dt:compute0:thread38;1
@type: Interface

@id:dtmi:dt:compute0:thread39;1
@type: Interface

@id:dtmi:dt:compute0:observation22:;1
@type: ObservationInterface

@id:dtmi:dt:compute0:benchmark3:;1
@type: BenchmarkInterface

@id:dtmi:dt:compute0:core20;1
@type: Interface

@id:dtmi:dt:compute0:L1D:cache54;1
@type: Interface

Cluster
Level

System
Level

Socket
Level

Core
Level

Thread
Level

Cache
Level

perf

Figure 20 Knowledge Base of SuperTwin.

comprehend the factors influencing system performance in real time. An example KB is shown
in Fig. 20.

The Knowledge Base: Capturing the target system and its component hierarchy, the KB can be
parsed to acquire any information from topology to database parameters. There are two types
of metrics to be sampled from an HPC system. The first type is SWTelemetry, i.e., software and
system state-related metrics such as the number of processes, CPU, and memory load. These
metrics are set to be always sampled with a low frequency. The second type is HWTelemetry,
sampled from PMUs during kernel executions with high frequency. Sampling different metrics
with varying frequencies yields a need for metadata associated with the host system’s metadata.
While time-series databases are tailored for telemetry data, they cannot keep much (linked)
metadata. On the contrary, managing time-series data via a document database is impractical.60

For this reason, SuperTwin’s KB uses two types of databases with links between them. To
this end, while InfluxDB stores the sampled SWTelemetry and HWTelemetry, MongoDB stores
the knowledge base as JSON-LD extended with entries for each computation. To associate the
computations with telemetry, pointers to InfluxDB are used to recall corresponding metrics.

Employing a tree-structured KB enables fully automated performance monitoring, anomaly
detection and dashboards with meticulously selected metrics, tailoring various views. These views,
namely (a) Focus View, (b) Level View, and (c) Subtree View, allow for a dynamic and versatile
performance data exploration. Multiple views enable fine- and coarse-grain investigations into
the component and system performance. Overall, SuperTwin can visualize data from different
components and systems in tandem allowing for comprehensive analysis and comparison, further
enriched by the inclusion of various views using Grafana visualization tool.

• The focus (i.e., component) view offers a dashboard that visualizes active metrics from a single
component, e.g., a socket, core, thread, network, disk, or process, providing a focused lens on
individual element performance. This view can be extended to focus on the path from the root
(whole system) to the focused component to investigate the root cause of anomalous behaviors

60Friedemann. “Linked Data Architecture for Assistance and Traceability in Smart Manufacturing”. MATEC Web of
Conferences 304 (2019), p. 04006. doi: 10.1051/matecconf/201930404006; Katarina Milenković. “Enabling Knowledge
Management in Complex Industrial Processes Using Semantic Web Technology”. English. Proceedings of the 2019
International Conference on Theory and Applications in the Knowledge Economy. 2019 International Conference on Theory
and Applications in the Knowledge Economy, TAKE 2019 ; Conference date: 03-07-2019 Through 05-01-2020. 2019.
url: https://www.take-conference2019.com/.

SparCity 30

https://doi.org/10.1051/matecconf/201930404006
https://www.take-conference2019.com/

(a) Focus view for an individual cache

(b) Subtree view for a node

Figure 21 Focus- and subtree-view dashboards, automatically generated by SuperTwin .

SparCity 31

Figure 22 Level-view for different matrix orderings.

or performance drawbacks. That is the path navigating from a component perspective to a
more generalized system perspective is analyzed, aiding in tracing and isolating performance
issues. An example focus-view dashboard is given in Fig. 21(a) for an individual cache.

• The subtree (i.e., (sub)system) view seeks to zoom into performance events, starting from an
arbitrary node and extending to all connected leaf nodes, moving from a general perspective
to a more specific one, i.e., from a single socket to all cores/caches. The detail intensifies as
the path moves from the root (subsystem) to the leaf (components at the bottom of the KB
hierarchy), facilitating a deeper dive into specific performance events and data. An example
subtree-view dashboard for a single server is given in Fig. 21(b).

• The level (i.e., type) view generates a dashboard that visualizes multiple instances from the
same type, such as a group of threads, disks and even processes. This view allows the isolation
of a single type, which corresponds to a level in the KB tree, treating them individually or
in comparison to components within the same or a different system, whereas the linked-data
capabilities enable the automatic visualization of component performance across different
machines. For instance, the level-view dashboards for different processes running SpMV (each
with a different reordering of the same matrix) is given in Fig. 22.

KB Lifecycle: The knowledge base is not a static object. It captures more about the system it
represents as time passes by attaching new entries. To initialize the KB, SuperTwin uses its
probing tool. To comprehensively capture the structural details of a system, including component
specifications, inter/intra-relationships, and their associated performance metrics, a detailed prob-
ing is required. SuperTwin targets each hardware component that can be monitored, produce
metrics or affect the overall system performance. Furthermore, it captures their relationships

SparCity 32

in a lightweight and adaptable fashion. SuperTwin’s probing relies on widely available Linux
tools to gather data. The system, network, and memory information are collected via lshw. The
CPU, memory/cache topology metadata are collected by parsing likwid-topology from likwid

tools61 and cpuid instruction. When available, disk info is probed from /sys/block/*/device

and SMART62 utility. PMU information is collected with libpfm4 library, which can recognize
model-specific registers and their events of virtually every x86 and ARM processor available on
the market. Upon probing available PMU metrics via libpfm4, and software telemetry via PCP,
are filtered and mapped with the components.

In the initial KB, every single component that performs computation, communication, or I/O
is represented with an Interface. Furthermore, each relationship among these components is
encoded into these interfaces with a Relationship. The available metrics for the components are
filtered and encoded as SWTelemetry and HWTelemetry. This makes precisely pinned executions
and automated queries possible. To keep the KB dynamic and continuously link the system
components to performance data, SuperTwin uses Interfaces and attaches their instances (i.e.,
entries) to KB. For instance, as mentioned above, processes are monitored via per-process kernel
metrics. JSON-LD interfaces are serialized with given parameters into a run-time object. Except
for the ProcessInterfaces, all classes/interfaces have their values assigned as constants during
the generation phase. In contrast, a ProcessInterface is re-instantiated each time it is invoked,
reflecting the dynamic nature of processes. For performance events, SuperTwin has two other
interface classes:

• BenchmarkInterface, and BenchmarkResult as a helper class, is designed to record benchmark
results. SuperTwin is able to perform Cache Aware Roofline Model (CARM), STREAM63 and
High Performance Conjugate Gradient64 (HPCG) benchmarks homogeneously using the
BenchmarkInterface. It contains the source codes of these benchmarks in its codebase and
similar to the probing phase, it first copies these codes to the target system. If required, based
on the information in KB, SuperTwin first compiles the benchmarks on the target system
using the benchmark’s preferred compiler if it exists, e.g., icc or gcc. After the benchmark,
SuperTwin parses the results and creates a BenchmarkInterface with the corresponding
BenchmarkResult.

• ObservationInterface entries encode sampled hardware performance events and system
metrics, executed commands, generated affinity, time and other relevant metadata. Using
the parameters in KB, queries can be generated to automatically retrieve data through these
entries. A basic ObservationInterface entry is shown in Listing 1. The queries automatically
generated by SuperTwin to analyze the BenchmarkEntry in Listing 1 are given in Listing 2.

Performance DB: For long-term data management, thanks to its modular design, SuperTwin

operates a global performance database, SuPerDB. Unlike local instances, SuPerDB employs
cloud instances of MongoDB and InfluxDB. With a global performance database, SuperTwin

aims to accumulate performance metrics from a wide array of systems to enhance architectural

61Thomas Röhl et al. “LIKWID Monitoring Stack: A Flexible Framework Enabling Job Specific Performance mon-
itoring for the masses”. 2017 IEEE International Conference on Cluster Computing (CLUSTER). 2017, pp. 781–784. doi:
10.1109/CLUSTER.2017.115.

62The Smartmontools Team. Smartmontools. Accessed on 5th October 2023. url: https://www.smartmontools.org/.
63John McCalpin. “Memory bandwidth and machine balance in high performance computers”. IEEE Technical

Committee on Computer Architecture Newsletter (1995), pp. 19–25.
64Jack Dongarra and Michael A Heroux. “Toward a new metric for ranking high performance computing systems”.

Sandia Report, SAND2013-4744 312 (2013), p. 150.

SparCity 33

https://doi.org/10.1109/CLUSTER.2017.115
https://www.smartmontools.org/

research and train robust machine learning models, particularly leveraging Large Language
Models (LLMs) which can exploit the rich metadata collected to be trained as an assistant for
performance engineering. The users of SuperTwin have the option to report their performance
telemetry readings and the system’s knowledge base to the performance database, alongside their
local instances.

1 {

2 "@type": "ObservationInterface",

3 "@id": "278e26c2 -3fd3 -45e4 -862b-5646 dc9e7aa0",

4 "displayName": "rcm_rma10_mt",

5 "time": 48.667,

6 "command": "./spmv -f rma10.mtx -o rcm -t 4",

7 "modifier": "likwid -pin -q -c S0:0-1@S1:0-1",

8 "no_threads": 4,

9 "involved_threads": [0,1,22,23],

10 "sampled_sw_metrics": ["kernel.percpu.cpu.idle", "mem.numa.alloc.hit", "mem.numa.alloc.

miss"],

11 "sampled_hw_metrics": ["RAPL_ENERGY_PKG", "INSTRUCTION_RETIRED", "FP_ARITH:

SCALAR_DOUBLE", "MEM_LOAD_RETIRED:L1_HIT"],

12 "dashboard": "http :// localhost :3000/d/-PiOFZEVz/pmus -278 e26c2 -3fd3 -45e4 -862b-5646

dc9e7aa0?time =1681499308500& time.window =17000"

13 }

Listing 1: An example ObservationInterface entry which is used to retrieve sampled metrics. A report
is generated on the fly and added to the entry before appending to KB.

1 SELECT "_cpu0", "_cpu1", "_cpu22", "_cpu23" FROM "kernel_percpu_cpu_idle" WHERE tag="278

e26c2 -3fd3 -45e4 -862b-5646 dc9e7aa0"

2 SELECT "_node0", "_node1" FROM "mem_numa_alloc_hit" WHERE tag="278e26c2 -3fd3 -45e4 -862b

-5646 dc9e7aa0"

3 SELECT "_cpu0", "_cpu1", "_cpu22", "_cpu23" FROM "

perfevent_hwcounters_fp_arith_scalar_double" WHERE tag="278e26c2 -3fd3 -45e4 -862b-5646

dc9e7aa0"

4 SELECT "_node0", "_node1" FROM "perfevent_hwcounters_RAPL_ENERGY_PKG" WHERE tag="278e26c2

-3fd3 -45e4 -862b-5646 dc9e7aa0"

Listing 2: Queries automatically generated by SuperTwin for the BenchmarkInterface entry
given in Listing 1.

In SuPerDB, the ObservationInterface of SuperTwin evolves into two versions within
the performance database context: TS ObservationInterface and AGGObservationInterface,
where the latter statistically summarizes data using various aggregations, e.g., min, max, mean,
to manage high data volumes. The users require a local SuperTwin instance to access SuPerDB,
visualize performance data, and automatically generate dashboards and reports. Without Super-
Twin, they can only download selected data for ML training. Future adaptations may include
appending source code and binary executables to the collected metadata, facilitating the training
of models that can optimize code and predict performance and potential inefficiencies.

Adding Compute Devices to SuperTwin: The integration of a computing device, i.e., FPGA,
GPU, etc., into the KB is handled similarly to other hardware components within a system.
Initially, an in-depth probing of the target devices is done using widely available tools. For
instance, in the case of Nvidia GPUs, this investigation uses nvidia-smi to find available GPUs,
their models, bus and process information. /sys/class/drm/ is used for NUMA location, and
DeviceQuery for the hardware specifications such as the number of SMs, shared memory, and
cache sizes. The latest GPUs lack the capability for real-time hardware telemetry reporting
without modifications to the source code. To address this, we have employed pcp-pmda-nvidia

SparCity 34

for collecting SWTelemetry, essentially capturing every metric supported by NVML. Regarding
HWTelemetry, we leveraged the approach used in benchmark executions. SuperTwin is tasked
with creating a wrapper script for initiating the kernel launch and configuring ncu to record
hardware performance events during runtime. Following the completion of these executions,
SuperTwin analyzes the output from ncu, integrating these comprehensive performance metrics
into the KB through the ObservationInterface. An example for (a subset of) an Interface

encoding a GPU device in KB is given in Listing 3

1

2 "dtmi:dt:cn1:gpu0;1": {

3 "@type": "Interface",

4 "@id": "dtmi:dt:cn1:gpu0;1",

5 "@context": "dtmi:dtdl:context ;2",

6 "contents": [

7 {

8 "@id": "dtmi:dt:cn1:gpu0:property0 ;1",

9 "@type": "Property",

10 "name": "model",

11 "description": "NVIDIA Quadro GV100"

12 },

13 {

14 "@id": "dtmi:dt:cn1:gpu0:property1 ;1",

15 "@type": "Property",

16 "name": "memory",

17 "description": "34359 Mb"

18 },

19 {

20 "@id": "dtmi:dt:cn1:gpu0:property12 ;1",

21 "@type": "Property",

22 "name": "numa node",

23 "description": 0

24 },

25 {

26 "@id": "dtmi:dt:cn1:gpu0:telemetry1337 ;1",

27 "@type": "SWTelemetry",

28 "name": "metric4",

29 "SamplerName": "nvidia.memused",

30 "DBName": "nvidia_memused",

31 "fieldName": "_gpu0",

32 },

33 {

34 "@id": "dtmi:dt:cn1:gpu0:telemetry1404 ;1",

35 "@type": "HWTelemetry",

36 "name": "metric137",

37 "PMUName": "ncu",

38 "SamplerName": "gpu__compute_memory_access

39 _throughput",

40 "DBName": "ncu_gpu__compute_memory_access

41 _throughput",

42 "FieldName": "_gpu0",

43 "description": "Compute Memory Pipeline :

44 throughput of internal activity within

45 caches and DRAM",

46 }}

Listing 3: An example GPU Interface entry which is used to monitor GPU devices on the system and
profile kernel executions.

The Mechanics of SuperTwin: SuperTwin is designed to run on a host that can be different
than the target system. The host runs the SuperTwin daemon as well as the tools with heavy
workloads, e.g., InfluxDB, MongoDB, and Grafana. The target only runs the PCP samplers
and reports telemetry to the host when requested. In Figure 23, step 0 reads the environment

SparCity 35

variables such as the IP addresses of InfluxDB and MongoDB instances and Grafana token to the
SuperTwin daemon. In step 1 , the probing module is copied to the target system to generate a
JSON file containing the system information which, in 2 , is copied back to the host to generate the
KB. The information collected from all the tools, components, and third-party tools SuperTwin

manages is fused for KB generation. Once the KB is generated, it is inserted into MongoDB in
step 3 . Step 3 re-occurs every time KB changes or SuperTwin is restarted. When this phase is
completed, the framework becomes fully functional using only this data structure.

In Figure 23, two SuperTwin scenarios are shown; the first is sampling software emitted
metrics to monitor system state (Scenario A), and the other is capturing the hardware perfor-
mainglunce events during kernel execution. In step A1 , using KB, SuperTwin configures the
PCP collectors and samples system-related metrics, such as CPU and memory usage, NUMA-
related events, and energy spent. In A3 , a sampler on the target is requested for this telemetry.

Since the query parameters are already encoded in KB, steps A1 and A2 can happen at the same
time. That is the dashboards are already generated on the host when the target starts reporting.

Figure 23 Two scenarios within the SuperTwin framework

In Scenario B, SuperTwin samples hardware events reported from the PMUs. In this case,
it focuses on an execution on the target and the components on which the execution takes place.
Therefore, SuperTwin requests an executable and its command-line parameters. Once these are
provided, the PMUs are configured to report the requested metrics in step B1 . That is SuperTwin

configures the sampler in the same way as step A1 . After the PMUs are configured, it generates a
script to run the requested kernel on the target system. This script bounds the threads to the cores
using one of the balanced, compact, numa balanced, numa compact strategies based on the probed
target system topology. Then it samples performance events, executes the script to run a kernel on
a target and stops the sampling as the kernel is halted. An ObservationInterface is generated
to encode the execution metadata, collected metrics and the unique observation ID associated
with the time-series data in InfluxDB. In step B8 , the ObservationInterface is appended to the
system’s KB. This ObservationInterface entry is later used to recall the performance data for
visualization or analysis purposes.

Abstraction Layer: To perform its actions and to effectively monitor PMU events on diverse
target systems, each hosting CPUs across various vendors and micro-architectures, SuperTwin

leverages an Abstraction Layer. The monitoring units and their reported events can significantly

SparCity 36

vary among different micro-architectures and from vendor to vendor. For instance, Intel has four
general-purpose programmable counters/per-core to count performance events (eight if is not
shared with a second thread in the core), whereas AMD has two internal counters, one for each
sampling flag. Intel provides 62 sub-events corresponding to 12 events, each accompanied by
mask values. Similarly, AMD offers support for events similar to Intel. As an example, similar-
ities and differences of events for Intel Cascade and AMD Zen3 are listed in Table 8. A detailed
comparison between Intel and AMD PMUs can be found in.65

Event Intel Cascade AMD Zen3

Energy
RAPL ENERGY PKG
RAPL ENERGY DRAM

RAPL ENERGY PKG
RAPL ENERGY DRAM

Retired Inst. INSTRUCTIONS RETIRED RETIRED INSTRUCTIONS

Tot. Mem. Op.
MEM INST RETIRED:ALL LOADS +
MEM INST RETIRED:ALL STORES

LS DISPATCH:STORE DISPATCH+
LS DISPATCH:LD DISPATCH

L3 Hit Not Supported LONGEST LAT CACHE:MISS +
LONGEST LAT CACHE:RETIRED

Table 8 Intel vs. AMD PMU events: the same, similar, different, and exclusive event names for the same
generic event, respectively.

To facilitate the monitoring of PMU events in a platform-agnostic manner, an abstraction layer
is implemented for SuperTwin. This layer effectively maps generic event names to concealed
hardware-specific PMU event names, enhancing the system’s versatility and ease of use. We have
established a set of common events, such as L1 CACHE DATA MISS, FP DIV RETIRED, and
RAPL ENERGY PKG, that are assumed to be supported by all the commodity CPUs. The rest of the
events are left to the user’s discretion. For further flexibility and scalability, SuperTwin utilizes
configuration files to establish a straightforward mapping of common events to corresponding
hardware events. The structure of a configuration file is as follows:

[pmu_name | alias]

<generic_event>:<hardware_event_1> [op]

[op] : ((+|-|*|/)(<hw_event> | <const>)) [op]

Following the pattern delineated, it is possible to generate a configuration file for “any” hardware
by specifying the events intended for monitoring. Upon registering the desired configuration files
within SuperTwin, the application proceeds to configure the PCP of the target system using the
registered configuration files when needed. Additionally, users can access event information in
a CPU agnostic manner within the program using pmu util.get(...) method. An example is
given below;

>pmu_utils.get(HW_PMU_NAME, COMMON_EVENT_NAME)

>pmu_utils.get("skl", "TOTAL_MEMORY_OPERATIONS")

>[

"MEM_INST_RETIRED:ALL_LOADS",

"+",

"MEM_INST_RETIRED:ALL_STORES"

]

65Muhammad Aditya Sasongko et al. “Precise Event Sampling on AMD Versus Intel: Quantitative and Qualitative
Comparison”. IEEE Transactions on Parallel and Distributed Systems 34.5 (2023), pp. 1594–1608. issn: 1558-2183. doi:
10.1109/TPDS.2023.3257105.

SparCity 37

https://doi.org/10.1109/TPDS.2023.3257105

Although this example belongs to the Intel CPU outlined in Table 9, SuperTwin’s configuration
mapping via its abstraction layer offers versatility. Users can create mapping files for a wide
range of CPUs, including Intel, AMD, PowerPC, ARM, and others, as long as they are supported
by the libpfm4 library which is the core library that enables PCP to monitor PMU events in CPUs.
As SuperTwin configures PCP on the target, it creates empty and zero-overhead dashboards
on Grafana, which are simply JSON files. Last, but not least, the abstraction layer seamlessly
generates the formulas for the events the user is interested in. This changes from vendor to
vendor as well as for every architecture even when the events are the same. An abstraction layer
is necessary in modern tools to handle this diversity for performance profiling.

Cache-aware Roofline Model in SuperTwin: For an intuitive visualization framework, Super-
Twin supports the construction of a tailored CARM model for Intel and AMD microarchitectures.
It is enriched with a set of custom micro-benchmarks in x86 assembly, designed to experimentally
assess the realistically attainable maximum performance of a given system, i.e., the sustainable
bandwidth for different levels of memory hierarchy and the peak throughput of computational
units. In order to assess the different metrics necessary to construct the CARM roofs, such as
bandwidth and peak flops, we rely on the Time Stamp Counter (TSC) to measure the number of
clock cycles elapsed, detection of CPU operating frequency, and predefined amount of memory
and compute operations contained in a specific microbenchmark executed. The microbenchmarks
support various instruction set architecture (ISA) extensions, including scalar, SSE, AVX2 and
AVX512, along with multithreaded measurements. This allows for further customization of Su-
perTwin’s CARM plot based on the prevalent ISA extension or a specific thread count utilized
in the tested applications.

Thanks to Knowledge Base, CARM microbenchmarks are automatically configured for a target
system, taking into account cache sizes and available ISAs. To reduce the overheads associated
with extensive benchmarking of all possible combinations of thread counts, SuperTwin gener-
ates a subset of the most representative thread counts for the microbenchmark executions. Finally,
the KB is also used to store all the microbenchmarking results for each tested system, thus allow-
ing for a re-construction of the CARM plot without the need to re-run all the microbenchmarks.

Besides the construction of a CARM plot for a target system, SuperTwin also provides the
CARM-based visualization of the application execution progress at run-time (live monitoring
feature). This functionality is achieved by automatically configuring PMU events based on the
underlying architecture of a system, in order to accurately calculate the live Arithmetic Intensity
(AI) and live-GFLOPS of the system. These PMU-based metrics are sampled on a time-stamp
basis and used to plot the application points in real time on the generated CARM for the target
system. This generated panel is referred to in the framework as the live-CARM panel, which
offers a unique feature of SuperTwin by delivering real-time feedback on a target system’s
utilization relative to architectural constraints determined by the already constructed CARM. This
dynamic functionality is achieved through the formulation of specialized expressions based on
hardware events, enabling the calculation of GFLOPS and Arithmetic Intensity (AI) tailored to
diverse Intel and AMD microarchitectures.

The amount of GFLOPS is determined by mapping and adding all of the available floating-
point operation events of the target system, using the PMU remapping capabilities of SuperTwin.
As for the AI, this metric requires the already calculated GFLOPS, as well as the total amount of
memory bytes transferred to/from the processing cores, which calculation varies across different
generations of Intel and AMD systems. In general, they are inferred from the ratios of different
floating point instructions (scalar, SSE, AVX2, AVX512), which are applied to the total amount of

SparCity 38

store and load events measured in the target system.
The live-CARM panel also automatically retrieves the micro-benchmarking results (to con-

struct the CARM plot of the target system) from the Knowledge Base. By tightly coupling the
application’s live metrics with the CARM plot in the SuperTwin panel, we facilitate the observa-
tion of the relative performance of an application in real-time, when compared to the theoretical
limits of the architecture it is running on. Furthermore, SuperTwin auto-generates graphs for
any hardware metric configured by the user, which display the values of selected metrics for the
different cores of the target machine, including a cumulative sum of the events across all cores.

Experimental Results: In the host system, we used Grafana v9.4.7, InfluxDB 1.8, MongoDB 6.0.6.
For micro-benchmarks, we used likwid-bench v5.2.2. Specifications of the target systems used
in the experimental setting are presented in Table 9.

CSL ZEN3

OS CentOS Linux release 7.9.2009 (Core) x86 64 OS Ubuntu 22.04.3 LTS x86 64

Kernel 3.10.0-1160.90.1.el7.x86 64 Kernel 6.2.0-33-generic
CPU Intel Xeon Gold 6258R @2.7GHz (28c/56t) CPU AMD EPYC 7313 @3GHz (16c/32t)
Arch Cascade Lake Arch Zen3

Mem 64GB DDR4 @ 3200 MHz Mem 128GB DDR4 @ 2933 MHz
Env. pcp 6.1.0-1 Env. pcp 5.3.6-1

Table 9 Specifications of platforms used in the experiments.

The PCP agents include pmcd, which manages other agents and reports their readings;
perfevent, which samples PMU readings via Linux perf interface; pmdalinux, reporting software-
sourced system state metrics like memory usage; and pmdaproc, which reports per-process met-
rics like I/O and memory usage. CPU usage measurements use the proc.psinfo.utime and
proc.psinfo.stime, whereas memory measurements use the proc.psinfo.rss metric. Notably,
regardless of the reported metrics or sampling frequency, all agents maintain constant memory
usage. pmdaproc uses more memory due to a larger instance domain. Except for pmdaproc, all
agents are efficient in resource usage. Overall, SuperTwin employs 0 per-process metrics and
uses approximately 20 pmdalinux metrics, and 2 pmdaperfevent metrics at 1-second intervals.

During the hardware performance event samplings, both PCP run on the target system and
performance monitoring registers are sampled. Therefore kernel run-time may be affected nega-
tively. To measure the effect of sampling on a target system, we ran the same micro-benchmarks
from previous tests with and without sampling and measured the change in their completion
times. The overhead caused by sampling can be seen in Figure 24. Surprisingly, negative over-
heads are observed, which we explain as overhead added by sampling is smaller than the variance
observed between different runs of the same kernel. This is understandable since the positive
overheads are also measured at 0.01%. A similar negative overhead is also reported by66 even
in a much bigger distributed setting. However, a meaningful skew towards positive overhead is
observed with increasing frequency.

Monitoring Live Performance Events: To showcase the live monitoring capabilities of Super-
Twin, we execute two state-of-the-art algorithms for Sparse Matrix Vector Multiplication (SpMV),

66Andrzej Nowak and Georgios Bitzes. The overhead of profiling using PMU hardware counters. 2014. doi: 10.5281/
zenodo.10800. url: https://doi.org/10.5281/zenodo.10800.

SparCity 39

https://doi.org/10.5281/zenodo.10800
https://doi.org/10.5281/zenodo.10800
https://doi.org/10.5281/zenodo.10800

Figure 24 Overhead caused by profiling six likwid-bench kernels (executions repeated 5 times, the run-
times averaged).

Figure 25 Monitoring live performance events during SpMV execution on Intel CSL system

i.e., Intel MKL67 and Merge,68 on the Intel CSL system presented in Table 9. We selected five

67Endong Wang et al. “Intel Math Kernel Library”. High-Performance Computing on the Intel® Xeon Phi™: How to Fully
Exploit MIC Architectures. Springer International Publishing, 2014, pp. 167–188. doi: 10.1007/978-3-319-06486-4_7.
url: https://doi.org/10.1007/978-3-319-06486-4_7.

68Duane Merrill and Michael Garland. “Merge-based sparse matrix-vector multiplication (spmv) using the csr
storage format”. Acm Sigplan Notices 51.8 (2016), pp. 1–2.

SparCity 40

https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1007/978-3-319-06486-4_7

Name Group Rows Cols Nnz
adaptive DIMACS10 6,815,744 6,815,744 27,2M
audikw 1 GHS psdef 943,695 943,695 77,7M
dielFilterV3real Dziekonski 1,102,824 1,102,824 89,3M
hugetrace-00020 DIMACS10 16,002,413 16,002,413 48,0M
human gene1 Belcastro 22,283 22,283 24,7M

Table 10 Sparse matrices used in the experiment.

sparse matrices from the SuiteSparse collection,69 as presented in Table 10, which cover a range of
matrices from different scientific domains, characteristics, dimensions, and number of non-zero
elements. Both SpMV algorithms are performed on the original (unaltered) matrices, as well as
on their reordered versions using Reverse Cuthill-McKee (RCM).70 For each combination of the
sparse matrices, algorithms and reordering, the performance data is collected at runtime.

The obtained results are presented in Figure 25, when running the original (top part) and
RCM-reordered (bottom part) matrices, and by subjecting each sparse matrix to the Intel MKL,
followed by the Merge SpMV algorithm. For all cases, a set of PMU events were collected,
these include SCALAR DOUBLE INSTRUCTIONS, AVX512 DOUBLE INSTR., TOTAL MEMORY INSTR., and
RAPL POWER PACKAGE, with their evolution during the algorithm execution is depicted in Figure 25.
As can be observed, there is a noticeable difference in the overall execution time required to
process all five original (top) and reordered (bottom) matrices, where the reordered ones took
about 22% less time for processing. This effect indicates the positive influence of reordering on
improved data locality, which subsequently results in substantial performance improvements.

By focusing on the evolution of collected PMU events presented in Figure 25, one can observe
that the AVX512 DP FP events are only manifested during the Intel MKL execution, while the
SCALAR DP FP appear during the Merge algorithm runs. This is due to the ability of MKL SpMV
implementation to take advantage of the Intel CPU’s AVX512 capabilities, while Merge SpMV only
exercised the scalar units (note the drop in AVX512 and the increase in scalar FP instructions at the
vertical dashed lines, i.e., the points in time when MKL finishes and Merge starts its execution).
We can also observe that during the MKL execution, the measures for RAPL POWER PACKAGE

and TOTAL MEMORY INSTRUCTIONS are lower than for Merge. This corroborates the fact that the
codes using higher SIMD ISA may provoke reduced instruction counts when compared to their
scalar counterparts (e.g., AVX512 load/store instructions involve 64-byte data transfer versus
scalar memory instructions that operate on 8 bytes of data). This phenomenon, as well as data
locality in different memory levels achieved with different algorithms and reordering, can provoke
significant power consumption variations, as shown in Fig. 25.

Monitoring Live CARM: To showcase the live-CARM feature in SuperTwin, we further an-
alyze the performance differences between MKL and Merge SpMV algorithms, as well as three
likwid benchmarks on the Intel CSL system (see Table 9).

• SpMV Execution Profiling: Figure 26 presents the live-CARM panel during the execution
of both Intel MKL SpMV and Merge SpMV for the hugetrace-00020 (see Table 10) in its
original and RCM-reordered form. The live-CARM timestamps belonging to each execution
phase are identified by the colored square that contains them, namely: pink square – Intel
MKL; and orange square – Merge execution, while for both algorithms the blue and green

69Tim Davis. Sparse Matrix Collection. Accessed on 5th October 2023. url: https://sparse.tamu.edu/.
70Elizabeth Cuthill and James McKee. “Reducing the bandwidth of sparse symmetric matrices”. Proceedings of the

1969 24th national conference. 1969, pp. 157–172.

SparCity 41

https://sparse.tamu.edu/

Figure 26 Live-CARM during SpMV execution

squares denote the executions corresponding to the original and RCM-reordered matrix,
respectively. As can be observed in the CARM plot, for each algorithm, the RCM reordering
yielded higher performance, while we can also observe that the Intel MKL SpMV provides
higher performance than the Merge SpMV (mainly due to its ability to exploit AVX512

SIMD capability). Furthermore, this study showcases how the Live-CARM dashboard can
be used to make intuitive and insightful performance analyses across different applications
and their execution phases during the run-time, as it allows pinpointing the data locality in
different memory levels.

• Benchmark Execution Profiling: Live-CARM can also be used to profile benchmarks, by
directly comparing the execution of a benchmark against the live-CARM roofs, i.e., the
performance upper-bounds attainable on a target platform for different memory levels and
compute units. This analysis provides a general idea on the ability of executed applications
to fully exploit the capabilities of underlying hardware resources. For this purpose, various
benchmarks from the likwid tool71 (Triad, PeakFlops, and DDOT) were considered, with
corresponding live-CARM reports presented in Figure 27.

The Triad benchmark (see orange points enclosed with green box) is a memory-bound
benchmark with a theoretical AI of 0.625, which is accurately captured by the live-CARM
in Fig. 27. As can be seen, the performance of this kernel approaches the L2 roof, but
it is unable to surpass it since the workload size does not fit in the 32Kb L1 cache. The
PeakGflops benchmark (red dots enclosed with the dark blue box) is designed to reach the
peak FP performance. With a theoretical AI of 2, this benchmark reports a performance
very close to the one obtained with the CARM microbenchmarks (the application points
aligned with the horizontal live-CARM roof in Fig. 27). Finally, similarly to Triad, the

71Thomas Röhl et al. “Overhead Analysis of Performance Counter Measurements”. 2014 43rd International Conference
on Parallel Processing Workshops. 2014, pp. 176–185. doi: 10.1109/ICPPW.2014.34.

SparCity 42

https://doi.org/10.1109/ICPPW.2014.34

Figure 27 Live-CARM during Likwid benchmarks execution

DDOT benchmark, is a memory-bound kernel that utilizes smaller problem sizes, thus able
to fit in the L1 cache. As presented in Fig. 27 (see red dots with a light blue box), the
theoretical DDOT AI of 0.125 is accurately captured by the live-CARM, with the performance
surpassing the L2 roof, and approaching the maximum performance of the architecture.

3.4 sparseviz

SparseViz is a low-code library designed to enhance the visualization of sparse matrices and
tensors without the need for direct coding. It provides a user-friendly inter- face and tools
that allow researchers and developers to easily explore sophisticated sparse data structures and
identify the reasons for performance bottlenecks. Combined, SparseViz and SparseBase offer
a comprehensive ecosystem for handling sparse data, emphasizing ease of use and integration
with existing computational frameworks. In this way, advanced data processing techniques
become available to a wider audience.

SparseViz is built upon the principle of simplifying the interaction with sparse data struc-
tures. It offers a suite of functionalities that cater to the needs for understanding the performance
of a function running on sparse data. It not only facilitates the efficient representation and manip-
ulation of sparse data but also extends its capabilities to various operations such as implementing
orderings, executing kernels, and visualizing them. It has been designed with extensibility in
mind, allowing for continuous development and integration of new features, i.e., orderings and
kernels.

Key Features: SparseViz’s capabilities are designed to address various challenges and needs
encountered in working with sparse data. Here are some of its key features:

• Visualization Tools: The main functionality of SparseViz is its capability to visualize
sparse data structures. With this one can understand complex sparsity patterns and see
their impact on performance.

SparCity 43

Figure 28 A cardiac simulation matrix in the Natural and RCM order.

• Representation of Sparse Data Structures: SparseViz excels in the efficient handling and
representation of sparse matrices and tensors, making it easier to work with large, sparse
datasets.

• Flexible Ordering Systems: SparseViz allows for customizable ordering of sparse data
structures. This feature is particularly useful for optimizing data (to increase cache-hit ratio)
for specific algorithms or processing techniques.

• Automated Kernel Execution: With SparseViz, users can execute their customized ker-
nels on sparse data. This functionality is essential for understanding the efficiency of the
implemented orderings in practical terms.

• Efficient Storage Solutions: The library offers optimized storage solutions for sparse data.
This ensures that large datasets are not only stored efficiently but are also easily retrievable
for future use.

Figure 28 shows a matrix coming from one of our use cases, Cardiac Simulation. With
SparseViz, one only needs to enter the matrix file location, the orderings s/he wants (Natural
and RCM in the figure) and the CPU/GPU kernel names s/he wants to execute on the ordered
matrices (CPU/GPU SpMV with different thread counts and size of Block/Grid). Metrics that

SparCity 44

(a) Tensor in Natural order.

(b) Tensor in RCM order.

(c) Tensor in PaToH order.

Figure 29 The first three modes of the NIPS tensor are ordered with different algorithms.

define the compactness of the sparsity structure obtained after the orderings, such as bandwidth,
average row/column nonzero span, number of empty bins etc., are also reported along with the
kernel execution times. SparseViz is also able to report the values collected from HW counters
obtained via perf.

In addition to matrices, SparseViz can also work with tensors. Figure 29 shows the visualiza-

SparCity 45

tion of the NIPS tensor with three different orderings; Natural (a), RCM (b), and PaToH (c). This
tensor corresponds to the papers published in the NIPS conference from 1987 to 2003. The modes
represent paper-author-word-year with dimensions 2, 482 × 2, 862 × 14, 036 × 17 and the values
are counts of words. In this visualization, we have extracted the first three modes. The 3D scatter
plots on the left show the 3D view of the nonzeros organized in multiple 128 × 128 bins. The
rightmost charts show the nonzero distribution among these bins. The middle heatmaps show
the aggregated nonzero distribution when the tensor is viewed from XY, XZ, and YZ dimensions.

3.5 sparse matrix/tensor generator

A smart sparse matrix and tensor generator is developed that mimics real sparse matrices and
tensors. The aim is to obtain a large number of sparse matrices and tensors to study ML models,
increase the size of the open datasets, and quickly evaluate proposed methods and algorithms
without storing the matrix or tensor. The generator imitates real matrices and tensors using their
substantial features.

A strong advantage of the matrix and tensor generator is that it utilizes size-independent
features that can be used easily to generate instances with different sizes, such as coefficient of
variation, imbalance, and density. For matrices, more matrix-related features are also included as
options for the user, such as bandwidth, profile, and symmetricity.

The sparse matrix generator (genMat) and the tensor generator (genTen) are available
at https://github.com/sparcityeu/genMat and https://github.com/sparcityeu/genTen, re-
spectively.

Since the matrix and tensor generator algorithms are similar, and tensors are the generalization
of matrices, the results are presented for the tensor case. The effectiveness of the tensor generator
is validated by means of the feature quality and the decomposition performance of the generated
tensors.

Table 11 shows the comparison of the generated tensors with their original versions (real
tensors) in terms of some important features. Since the number of nonzeros is the most significant
feature that a generator must obey, our generator applies some scalings during calculations to
catch the given density. The success of the generator in terms of obeying the given density is seen
in both levels of nonzero slice, nonzero fiber, and nonzero density. As can be seen in the table, the
resulting densities, i.e. the nonzero count of the generated tensors, are at least 0.96 times smaller
or at most 1.05 times larger than the ones of the respective original tensors.

Figure 30 depicts the success of the generated tensors in resembling the real tensors in terms
of tensor decomposition performance. The performance of the generated tensors is compared
with the performance of the naive random tensors, which have the same sizes and nonzero counts
but the nonzero locations are uniformly random. The SPLATT tool is used for applying the CPD
decomposition. The experiment is conducted on a 2-socket AMD EPYC 7352 CPU, using a single
thread. The runtime results of both the naive random and the generated tensors are normalized
with respect to the runtime of the original tensors. Therefore, the normalized values closer to 1.0
are interpreted as more successful in terms of resembling the original tensor performance. As
can be seen in the figure, the generated tensors are superior to the naive random ones for 14 out
of 16 cases, which validates the success of the generator.

3.6 partitioning utility api

We created a website called sparseutils.com to support the scientific community by providing
easy access to pre-partitioned matrices from the SuiteSparse Matrix Collection and tools for matrix
operations. This website is designed to help researchers and engineers optimize computations

SparCity 46

https://github.com/sparcityeu/genMat
https://github.com/sparcityeu/genTen
sparseutils.com

Table 11 Comparing the features of the original tensors with their generated versions.

Coefficient of Variation Density

Fiber per Slice Nonzero per Fiber Nonzero Slices Nonzero Fibers NonzerosName
Org Gen Ratio Org Gen Ratio Org Gen Ratio Org Gen Ratio Org Gen Ratio

LBNL-network 8.0 4.5 0.56 26.2 12.1 0.46 2.1E-06 2.1E-06 1.00 8.4E-10 9.5E-10 1.13 4.2E-14 4.4E-14 1.05
NIPS 0.2 0.2 0.98 0.0 0.0 1.00 8.3E-04 8.3E-04 1.00 3.1E-05 3.0E-05 0.98 1.8E-06 1.8E-06 0.98
uber 0.2 0.2 0.94 1.0 1.0 0.94 1.0E+00 1.0E+00 1.00 1.4E-01 1.3E-01 0.93 3.8E-04 3.8E-04 0.99
chicago-crime-comm 0.4 0.3 0.82 0.5 0.4 0.82 9.5E-01 9.5E-01 1.00 3.2E-01 2.7E-01 0.83 1.5E-02 1.4E-02 0.96
chicago-crime-geo 0.3 0.3 0.94 0.1 0.0 0.00 1.0E-01 1.0E-01 1.00 2.8E-04 2.9E-04 1.01 8.9E-06 8.9E-06 1.01
vast-2015-mc1-3d 0.5 0.5 1.00 0.0 0.0 1.00 1.0E+00 1.0E+00 1.00 1.4E-02 1.4E-02 0.99 6.9E-03 6.9E-03 0.99
vast-2015-mc1-5d 0.0 0.0 0.00 0.0 0.0 0.00 6.9E-03 6.9E-03 1.00 6.9E-05 6.9E-05 1.00 7.8E-07 7.8E-07 1.00
DARPA1998 13.1 8.2 0.63 23.1 14.0 0.61 8.0E-01 8.1E-01 1.02 1.5E-04 1.6E-04 1.03 2.4E-09 2.4E-09 1.00
enron 4.1 3.6 0.87 1.8 1.4 0.76 4.4E-03 4.4E-03 1.00 3.7E-06 3.7E-06 0.99 5.5E-09 5.7E-09 1.05
NELL-2 3.3 3.1 0.94 0.9 1.1 1.25 1.0E+00 1.0E+00 1.00 3.0E-03 3.1E-03 1.01 2.4E-05 2.4E-05 0.99
freebase music 24.4 20.2 0.83 0.1 0.0 0.00 9.7E-01 1.0E+00 1.03 1.8E-07 1.9E-07 1.04 1.1E-09 1.1E-09 1.03
flickr-3d 3.3 3.2 0.97 1.0 1.0 0.99 1.0E+00 1.0E+00 1.00 3.1E-06 3.1E-06 1.00 7.8E-12 7.9E-12 1.01
flickr-4d 1.0 1.0 0.99 0.0 0.0 1.00 3.1E-06 3.1E-06 1.00 7.8E-12 7.9E-12 1.01 1.1E-14 1.1E-14 1.01
freebase sampled 24.0 19.4 0.81 0.1 0.0 0.00 9.1E-01 9.1E-01 1.00 9.2E-08 9.6E-08 1.05 1.7E-10 1.8E-10 1.04
delicious-3d 2.8 2.7 0.99 1.4 1.0 0.71 1.0E+00 1.0E+00 1.00 5.1E-06 5.1E-06 1.00 6.1E-12 6.1E-12 1.00
NELL-1 13.6 10.8 0.80 7.5 4.5 0.60 1.0E+00 1.0E+00 1.00 2.8E-06 2.8E-06 1.01 9.1E-13 9.2E-13 1.01

Figure 30 CPD (SPLATT) runtime comparison of the naive random and the generated tensors using single
thread. The values are normalized with respect to the runtime obtained for the respective original tensor.

across various applications by allowing them to download and work with partitioning vectors.
Our goal is to provide a centralized resource where users can:

• Explore and download partition vectors for the matrices in the SuiteSparse Matrix Collec-
tion.

• Access tools for common tasks like partitioning matrices, working with partition vectors,
and matrix reordering.

The SuiteSparse Matrix Collection is a large set of sparse matrices that arise in real applications.
The Collection is widely used by the numerical linear algebra community for the development
and performance evaluation of sparse matrix algorithms.

We aimed to offer pre-partitioned data from the SuiteSparse Matrix Collection because making
researchers partition these matrices each time they need them wastes computational resources.
Partitioning, especially of large matrices, is not only challenging but also demands significant

SparCity 47

computing power. The Collection is useful for those in numerical linear algebra to develop and
test sparse matrix algorithms, as it provides real-world matrices for more accurate and consistent
experiments. By providing these matrices pre-partitioned, we aim to save valuable time and
resources, facilitating more efficient and effective research.

Our collection consists of partitioning vectors for matrices in the SuiteSparse collection that
have more than one hundred thousand non-zero values. For each matrix that satisfies this
criterion, we used different partitioners (such as PaToH and METIS) to partition them into 2, 4, 8,
16, 32, 64, and 128 pieces respectively. During the partitioning process, we used all the available
partitioning objectives offered by these partitioners. For example, PaToH offers two different
partitioning objectives, compact and cutpart. We partitioned each matrix into powers of two for
these two metrics respectively. If applicable, we used a constant seed of 1 for each partitioning
task for consistency. We also recorded meta-data related to each partitioning operation such as the
weights of each part, the maximum imbalance of the partitions, and the time it took to partition
the matrix.

The website we created to share our collection is divided into three main sections: Partitions,
Utilities, and About.

Partitions page contains the list of SuiteSparse matrices that we partitioned. On this page, using
the filter bar, users can specify the properties of the matrices of which they want to download
the partitioning vectors, such as specifying the maximum and minimum number of columns,
rows, and non-zero value counts, or filtering by particular keywords. Then, they can choose the
partitioner and partition count that they want to have. Users also have the option to download
the entire collection of partitions if they choose.

Figure 31 Partitions page

Utilities page contains the tools implemented for helping with tasks such as partitioning data
or reordering matrix rows. As of the time of this writing, we provide two different utilities to the
users. The first utility contains our codes utilizing partitioners such as PaToH and Metis, that we

SparCity 48

used to partition the Suitesparse collection. We have instructions on how to compile and run our
programs. These programs essentially act as wrappers for the partitioners. Our goal is to make
these partitioners easier and more straightforward to use.

We also provide a reader and converter tools for the partitioning vectors. With the help
of these tools, users can convert a partitioning vector to a permutation vector, and reorder the
corresponding matrix rows with respect to the permutation vector. These programs are provided
as plain C source code, and instructions on how to compile and use them are written in their
GitHub repositories. They can work independently with each other.

Figure 32 Utilities page

About page contains information about the properties of the data that is hosted on the website,
how to use the filtering and sorting functionalities, information about how the partitioning vectors
and tools were implemented, and lastly, the funding structure of the project.

We plan to continuously update our website using the feedback coming from our prospective
users and include the utilities that will be developed in the future. We are also planning to extend
our partitioning collection with matrices other than the ones present in the SuiteSparse Matrix
collection.

The front end of the website was built using Flutter SDK. Python and Flask were used to
develop the back end server, and is currently hosted on Heroku. Amazon S3 storage is being
used to store the partitioning vectors. The utilities provided in the website are stored on their
respective public GitHub repositories.

SparCity 49

4 sparcity libraries

4.1 sparsebase

Sparsebase is a C++ library designed for High-Performance Computing (HPC) applications, focus-
ing on handling sparse data efficiently. It encompasses functions for encapsulating, preprocessing,
and managing input/output operations on sparse data seamlessly and optimally, serving as a
foundation for workflows involving such data types. The library’s design is centered on achieving
the following objectives: delivering the fastest code to users, presenting an intuitive API for ease
of use, and ensuring the library’s extensibility and maintainability. With its versatility to integrate
into various sparse data workflows, the library prioritizes flexibility, notably in the choice of data
types utilized for storage. This emphasis on adaptability is reflected in Sparsebase’s highly tem-
plated structure, empowering users to employ data types that align with their specific workflows.
Furthermore, Sparsebase provides utilities for securely manipulating these data types, enhancing
the robustness of the library.

As described above, SparseBase is capable of performing various operations from reading
sparse file formats such as Matrix Market files to extracting a wide range of sparse matrix/graph
features. To be able to perform those operations, SparseBase heavily relies on formats. Formats,
store sparse data structures and are the fundamental data structures of the library. Tensors,
matrices, and graphs are all represented as Formats. Fig 33 is a code snippet showing a sample
usage of Sparsebase. In the snippet, a matrix market file is read into a matrix, and then that
matrix is converted, reordered, and permuted.

/ / Read t h e ma t r ix marke t f i l e i n t o a C o o r d i n a t e (COO) o b j e c t
COO<int , int , f l o a t >* coo =

IOBase : : ReadMTXToCOO<int , int , f l o a t >(f i lename) ;

/ / Conver t t h e f o r m a t o b j e c t i n t o a Compressed S p a r s e Row (CSR)
CSR<int , int , f l o a t >* c s r = coo−>Convert<CSR> () ;

/ / The c o n t e x t t o use f o r c a r r y i n g our r e o r d e r i n g and p e r m u t a t i o n
CPUContext cpu ;

/ / Carry out RCM r e o r d e r i n g on t h e CSR o b j e c t on t h e CPU.
/ / Allow c o n v e r t i n g i n p u t i f n e e ded
i n t * permutation =

ReorderBase : : Reorder<RCMReorder>({} , csr ,{&cpu } , t rue) ;

/ / Permute t h e o r i g i n a l ma t r ix o b j e c t us ing t h e g e n e r a t e d r e o r d e r i n g
CSR<int , int , int >* new csr =

ReorderBase : : Permute2D<CSR>(permutation , csr , {&cpu } , t rue) ;

Figure 33 A matrix market file is first read into a Coordinate (COO) object (Line 2), then it is converted to a
Compressed Sparse Row (CSR) representation (Line 5). Afterwards, a Reverse Cuthill McKee (RCM) reordering
is generated for it (Line 11), and the resulting permutation vector is used to transform the matrix (Line 14).

Sparsebase is designed to seamlessly integrate into any workflow involving sparse data struc-
tures. To ensure this adaptability, formats were devised to store data as raw C++ arrays without

SparCity 50

any additional auxiliary data or specific storage prerequisites. These arrays can be readily ac-
cessed by the user through a straightforward getter function. This facilitates swift retrieval of
data from Sparsebase into their workflows, devoid of any additional code overhead. Furthermore,
this storage approach guarantees optimal efficiency in terms of memory usage.

Formats can exist on different architectures. We specify an architecture in the library through
a Context class. Currently, the library has two context classes: CPUContext for data on the CPU,
and CUDAContext for data on a CUDA GPU.

Figure 34 Conversion graph. Each node is a Format object. Continuous lines are conversions, and dashed
lines are conditional conversions.

Another crucial functionality of SparseBase involves Conversions, which directly interacts with
the Formats. Sparse data structures are renowned for their diverse representations, which vary
in memory efficiency, access patterns, and stored data. SparseBase accommodates this diversity
in representations by offering an intuitive interface for converting between format objects. It
achieves this by conceptualizing Formats and conversions as a directed multi-graph. Each format
class serves as a node in this graph, and a conversion from format A to format B constitutes a
directed edge from A to B. This framework allows for multi-step conversions. For instance, in
the conversion graph illustrated in Fig 34, if we aim to convert a COO object to a CUDACSR
format, we can simply invoke a single call to the library with the desired destination format. The
library will then automatically determine the path from COO to CSR to CUDACSR and execute
the conversion accordingly, providing us with the CUDACSR object. This streamlined process is
immensely advantageous, as it obviates the need to provide conversions to and from every other
format when adding a new format to the library. Merely furnishing a conversion to and from a
format in the strongly connected component of the conversion graph is sufficient.

There are also I/O operations in the SparseBase. Almost every workflow involving sparse
data structures requires some I/O operations. Sparsebase provides an easy-to-use interface for
optimally reading and writing sparse data to disk. It can read some of the most common file
formats like the matrix market file format (.mtx file extension), edge lists, and the tensor file
format (.tns file extension) and, graph format (.graph).

4.1.1 reordering

Sparse matrix reordering is a fundamental process in the world of high-performance computing.
Reordering involves rearranging the initial structure of rows and columns of a sparse matrix
in order to achieve specific objectives without altering its mathematical content. In this context,
reordering plays a crucial role in optimizing the performance, efficiency, and memory usage of
operations involving these types of matrices.

The distribution of non-zero elements across different sparse matrices is more often than not
irregular and without a predictable pattern. Many sparse operations are then hard to optimize

SparCity 51

due to the irregular access to memory. By using reordering algorithms, the distribution of non-
zero in a sparse matrix can be optimized to address data locality and load-balancing issues
commonly found in various sparse kernels.

Different reordering algorithms target different objectives. In this context, sparsebase offers a
variety of algorithms with different objectives, each one with its own benefits. AMD and Nested
Dissection are two reordering methods that focus on the reduction of fill-ins, described as the
non-zeros that appear during Cholesky decomposition. RCM aims to reduce the bandwidth of
the sparse matrix, while Rabbit finds community patterns and orders the rows and columns
based on the community hierarchy of its graph representation. Sparsebase also provides a range
of reordering algorithms that cater to more specific objectives beyond those currently listed.
SlashBurn can be used as a compressing method for sparse matrices, with the focus in placing
non-zeros closer together. BOBA is characterized as a lightweight reordering algorithm, effectively
improving reordering time while maintaining a good final permutation. Gray ordering has a
heavy focus in placing rows with similar non-zero distributions closer together.

The reordering functions accept four arguments. The first argument is a structure containing
the reordering parameters specific to each algorithms. The second is the matrix structure, which
can be in CSR, COO or CSC format. The third argument is the context in which the reordering
will be performed. Finally, the fourth argument is a flag indicating whether the input matrix
format should be converted to the required format for the reordering to take place. Most functions
perform reordering on matrices in CSR format, except for BOBA, which operates on matrices in
COO format.

The output of these reordering functions is the inverse permutation vector of the matrix, which
is an array containing the new order of rows and/or columns of the sparse matrix. Each element
of the permutation vector corresponds to the index of a row and/or a column. In an inverse
permutation vector, each element represents the new index of a row or column, corresponding to
the original index of that row or column. Therefore, if index 1 corresponds to row/column 1, the
element in index 1 of the inverse permutation vector represents the new position of row/column
1 after reordering. To achieve the new reordered matrix structure, there are functions available
in SparseBase that can be used to apply the inverse permutation vector to the original matrix
structure. Below is an example illustrating the utilization of the Degree Reordering Algorithm.
The only parameter in this scenario is a flag that determines whether we opt for reordering in
ascending or descending order:

DegreeReorderParams params(true);

int*order = ReorderBase::Reorder<DegreeReorder>(params, csr, {&cpu}, false);

From the code above we obtain the inverse permutation vector. However, this vector alone
isn’t the final objective of the reordering process. We must proceed to transform the original
matrix structure into its reordered version by applying the inverse permutation vector in the
following way:

CSR<int,int,float>*new_csr = ReorderBase::Permute2D<CSR>(order, csr, {&cpu}, false);

This function returns the newly reordered matrix structure. It takes the same four arguments
as the reordering functions, with the only difference being the first one: instead of passing the
reordering parameters, we provide the inverse permutation vector. It’s worth noting that various
reordering algorithms come with different parameters. Typically, these algorithms have a default
setting for their parameters. Table X provides a listing of the different reordering functions
alongside their respective parameters.

SparCity 52

4.1.2 partitioning

Solving large-scale graph optimization problems often necessitates balanced partitioning due
to the inherent challenges posed by the sheer size and complexity of the graphs involved. By
breaking down a massive graph into smaller, manageable pieces, each segment can be processed
independently, allowing for parallelization and distributed computing. However, this approach
introduces potential suboptimality stemming from the interactions among different partitions.
Additionally, the presence of links or connections between distinct parts of the graph can signifi-
cantly impact both the runtime of the computation and the associated network communication
costs. Thus, there is a strong motivation to achieve balanced partitioning with minimal cut size,
ensuring efficient processing of graph data while mitigating the adverse effects of partitioning on
overall performance and resource utilization.

That is why a strong partitioner called Mt-KaHyPar is integrated into SparseBase alongside
other partitioning algorithms such as Patoh and METIS. Mt-KaHyPar stands out as a robust
solution for the challenging task of graph and hypergraph partitioning, essential for various com-
putational domains. With its fast and high-quality partitioning algorithms it can meet the diverse
needs of users. One of the key strengths of Mt-KaHyPar lies in its scalability, demonstrated by its
ability to efficiently utilize up to 64 threads without sacrificing solution quality. This scalability
is crucial for handling increasingly large datasets and leveraging modern parallel computing ar-
chitectures effectively. Furthermore, Mt-KaHyPar provides deterministic partitioning algorithms,
ensuring consistent solutions for the same input and random seed. This deterministic behavior
enhances reproducibility, facilitating experimentation and comparison across multiple runs, a
critical requirement in research and development environments.

Mt-KaHyPar also addresses the need for partitioning graphs and hypergraphs into a large
number of blocks with configurations tailored for scenarios where fine-grained partitioning is
necessary. This capability is particularly relevant in applications requiring intricate control over
partition granularity, accommodating scenarios where number of blocks exceed 1024. Addition-
ally, the tool incorporates optimized data structures specifically designed for graph partitioning,
resulting in significant speedups compared to conventional approaches. These optimizations
contribute to improved efficiency and reduced computational overhead, making Mt-KaHyPar a
preferred choice for large-scale partitioning tasks. Mt-KaHyPar supports various objective func-
tions, including cut-net, connectivity, sum-of-external-degrees, and Steiner tree metrics. Each
objective function offers distinct advantages and can be chosen according to specific application
requirements, such as minimizing communication overhead or optimizing wire-lengths in VLSI
design. Moreover, the tool facilitates the mapping of (hyper)graphs onto target graphs, a critical
aspect in many applications. By optimizing the Steiner tree metric, Mt-KaHyPar minimizes the to-
tal weight of all Steiner trees induced by the nets of the hypergraph on the target graph, enabling
efficient allocation of resources and minimizing communication costs in distributed systems.

In conclusion, Mt-KaHyPar emerges as a comprehensive and versatile tool for graph and
hypergraph partitioning, offering a combination of speed, scalability, and quality. Its integration
into frameworks like SparseBase expands its utility, allowing users to leverage its capabilities
alongside other partitioning algorithms. With its diverse features and customizable objective
functions, Mt-KaHyPar is well-equipped to address the partitioning challenges posed by modern
computational applications.

4.1.3 feature extraction

After examining workflows that involve sparse data, we note two observations: 1) Users typically
extract features from their data in batches rather than individually, and 2) the computation of

SparCity 53

Figure 36 Visualization of the feature extraction process shown in Şekil 35. 1) User passes the features they
want to extract (Lines 5-7 in Şekil 35). 2) Library realizes a fused kernel exists and fuses degree and degree
distribution. 3) User extracts these features for an input (Line 10 in Şekil 35), and 5) the library returns a map
from each feature’s ID to its output.

various features often involves multiple shared calculation steps. We integrate a feature extraction
module into Sparsebase to leverage these observations.

// F e a t u r e E x t r a c t o r i s an implementation of ClassMatcherMixin
FeatureExtrac tor<in t , in t , in t , double> engine ;

// We add whichever f e a t u r e s we wish to e x t r a c t
engine .Add(DegreeDistr ibut ion<in t , in t , in t , double >{}) ;
engine .Add(Degrees<in t , in t , in t >{}) ;
engine .Add(JaccardWeights<in t , in t , in t , double >{}) ;

// E x t r a c t o r fuses the f i r s t two
// f e a t u r e s and executes two kerne l s only
auto raws = e x t r a c t o r . E x t r a c t (f e a t u r e s , c s r) ;

// Fetch whichever f e a t u r e s are needed
// through s p e c i f i c IDs f o r Feature c l a s s e s
i n t * d e g r e e d i s t = std : : any cast<i n t *>(

raws [DegreeDistr ibut ion<in t , in t , in t , double>
: : g e t f e a t u r e i d s t a t i c ()]

) ;
f e a t u r e t y p e * jac w = std : : any cast<i n t *>(

raws [JaccardWeights<in t , in t , in t , double>
: : g e t f e a t u r e i d s t a t i c ()]

) ;

Figure 35 Extracting degrees and degree distribution

Firstly, we define a special kind of preprocessing classes called Features. Each one of these
classes extracts one or more features efficiently. Examples of such classes are DegreeDistribution
which can extract the degree distribution of the vertices in a graph, Degrees, which extracts
the degree of every vertex in a graph, and Degrees DegreeDistribution which will overlap the
computation of the former two classes and extract both of their outputs in one go.

The second part of this system is the ClassMatcherMixin class. This class can take multiple

SparCity 54

Feature classes, figure out if any of them can be replaced by their fused counterparts, and allow the
user to fetch them all at once efficiently. In other words, it allows the user to specify the individual
kernels they want, and then exploits any possibility for overlapping feature computations. The
code snippet in Fig 35 demonstrates the usage of concrete ClassMatcherMixin class called
FeatureExtractor which is specific for FormatOrderTwo classes. Fig 36 visualizes this process.

4.2 mpi communication offloading

In the reporting period we have developed a library, named libmmcso (MPI Multithreaded Commu-
nication Software Offloading), for transparent communication optimization of MPI applications.
Using our library, internal locking within the MPI library in multithreaded hybrid MPI applica-
tions can be avoided. Furthermore, internal progress within the MPI library can be guaranteed
for asynchronous communication operations (i.e., Isend or Irecv) and one-sided operations (i.e.,
Put or Get). This can reduce overheads from resource competition and improve the overlap of
communication and computation.

Both objectives, avoiding internal locking and providing progress guarantees, are achieved
by offloading the communication of an MPI application to one or more dedicated communica-
tion threads (offload threads). This, however, comes at the cost of compute resources due to the
reservation of resources for the communication thread(s).

4.2.1 software architecture

Figure 37 High-level software architecture of libmmcso.

Our approach is realized as an interposition layer residing between the MPI application
and the MPI library, and is compatible with common MPI implementations, such as IntelMPI,
OpenMPI, and MVAPICH. It can be used transparently by MPI applications using the standard
MPI interfaces. Code changes or recompiling is not necessary to use our library.

Fig. 37 shows the high-level software architecture. MPI calls made by threads of an MPI
application are intercepted by the interposition library. They are enqueued into a command
queue, instead of executed immediately. The offload thread dequeues commands, if available,
and performs the actual MPI operations using MPI’s PMPI interface.72 Additionally, the offload

72Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 4.0. 2021. url: https:

SparCity 55

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

thread manages pending MPI requests and provides the application thread with an MPI Request

object. The application thread can check this object for completion of the MPI call. Pending
MPI requests are checked for completion periodically by the offload thread, which forwards the
updated status to the application thread via the MPI Request object.

4.2.2 microbenchmarks

To evaluate the benefits of our communication offloading libary, we have developed a microbench-
mark suite, measuring overlap of computation and communication for point-to-point MPI opera-
tions. Each thread of an MPI process issues a nonblocking MPI Irecv followed by a nonblocking
MPI Isend. Next, each thread performs a certain amount of work (sleeps for a certain amount
of time), before the thread issues two MPI Wait calls, waiting for completion of the nonblocking
MPI calls. The communication happens between pairs of threads with the same thread ID of the
involved MPI processes. We measure the time spent in MPI calls (overhead) and the ratio of time
spent doing work divided by the total time (overlap) in dependence of the message size that is
communicated. This experiment is similar to the microbenchmark described by Vaidyanathan
et al.73 to evaluate the effectiveness of asynchronous progress and to quantify the overhead of
issuing nonblocking MPI calls.

Experimental Setup Our experiments are performed on the SuperMUC supercomputer. Each
compute node of the SuperMUC is equipped with a 48-core Intel Xeon Platinum 8174 (Skylake)
CPU. The CPUs have 2 sockets (NUMA-domains) and 24 cores per socket.

For evaluation we use the following inter-node communication scenario using four MPI
processes on two compute nodes. Communication is performed between threads of one compute
node to another. The threads (max. 23) of the same MPI process are pinned to dedicated cores
in the same NUMA-domain. One core per NUMA-domain is dedicated to the offloading thread
of the MPI application. We compare the performance of two standard MPI implementations
(IntelMPI and OpenMPI) using MPI THREAD MULTIPLE to our communication offloading approach.

Inter-Node Performance Fig. 8 shows the inter-node communication overhead and overlap of
computation and communication using our microbenchmark with scenario (2).

Again, the offloading approach has lower overhead for small messages below about 100 kB.
For larger messages, only Intel MPI using messages between 100 kB and 1 MB with 23 threads
is significantly better in terms of overhead. The achieved overlap using the offloading strategy is
again equally good or better in all of our test cases.

4.2.3 partitioned communication

Partitioned communication is based on the functionality for persistent communication, partitioned
point-to-point communication is included in MPI4.0.74 The idea is to provide a simple way to
combine multithreading with message passing while avoiding the performance implications of
fully multithreaded concurrent send/receive operations. Partitioned communication extends
the usual (buffer, count, datatype) descriptor for the data to be transmitted or received
with a fourth parameter denoting the number of partitions. The 4-tuple (buffer, partitions,

count, datatype) specifies that buffer contains partitions many partitions, each holding

//www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf.
73Karthikeyan Vaidyanathan et al. “Improving concurrency and asynchrony in multithreaded MPI applications using

software offloading”. Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis. 2015, pp. 1–12.

74Message Passing Interface Forum, MPI: A Message-Passing Interface Standard Version 4.0.

SparCity 56

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

103 104 105 106 107

msg size [bytes]

100

101

102

103

104

105

av
g.

 c
om

m
un

ica
tio

n
ov

er
he

ad
 [u

s]

IntelMPI (zero work)

Threads per Process / Offloading
2 Threads
2 Threads (Offloading)

12 Threads
12 Threads (Offloading)

23 Threads
23 Threads (Offloading)

103 104 105 106 107

msg size [bytes]

OpenMPI (zero work)

Intel Xeon Platinum 8174 (SuperMUC Skylake) 48 Core CPU (two nodes)

0

20

40

60

80

100

av
g.

 o
ve

rla
p

[%
]

IntelMPI
work: 100 ns

Threads per Process / Offloading
2 Threads
2 Threads (Offloading)
12 Threads
12 Threads (Offloading)
23 Threads
23 Threads (Offloading)

OpenMPI
work: 100 ns

0

20

40

60

80

100

av
g.

 o
ve

rla
p

[%
]

work: 10000 ns work: 10000 ns

103 104 105 106 107

msg size [bytes]

0

20

40

60

80

100

av
g.

 o
ve

rla
p

[%
]

work: 1000000 ns

103 104 105 106 107

msg size [bytes]

work: 1000000 ns

Intel Xeon Platinum 8174 (SuperMUC Skylake) 48 Core CPU (two nodes)

Figure 38 Top: inter-node communication overhead (lower is better) using our microbenchmark with zero work
and four MPI processes with 1, 12, and 23 threads per MPI process with and without communication offloading
for varying message size. Bottom: inter-node communication overlap of computation and communication
(higher is better) using our microbenchmark and four MPI processes with 1, 12, and 23 threads per MPI process
with and without communication offloading for varying message size and amount of work.

count elements of datatype. The communication model is then extended with the functions
MPI Pready and MPI Parrived specifying the partition number. MPI Pready is used on the sender
side to indicate that a particular partition of the send buffer is ready to be sent. MPI Parrived

on the other hand can be used on the receiver side to query if the data in a particular partition

SparCity 57

has fully arrived. these functions may be called by different threads, but they do not impose a
requirement for the MPI library to immediately send the data that was marked as ready. Instead,
an MPI implementation may aggregate message partitions as it sees fit and to guarantee the
completion of the send and receive operation, MPI Wait or MPI Test have to be used.

Holmes et al.75 have proposed partitioned collective operations. Here we follow their exposure
with some simplifications, which we believe will allow for a simpler and more efficient imple-
mentation. The basic concept in partitioned collective operations is the same as with partitioned
point-to-point operations. The same sequence of init-start-wait-free procedures is employed. For
each persistent collective operation there is a partitioned variant, except for barrier which moves
no data.

A simplified list of proposed partitioned collectives is shown in Fig. 41. Each (buffer,

count, datatype) triple is replaced by a (buffer, partitions, count, datatype) 4-tuple,
count now again specifying the number of elements per partition. While in partitioned point-
to-point operations sender and receiver may have different partitioning, we propose identical
partitioning for collectives for reasons of simplicity and efficiency of implementation. I.e., where
MPI requires that all invocations of a collective call have the same number of elements and
datatype, we require that they have the same number of partitions as well. Note that this is
different from the proposal of Holmes et al.,76 where different partition counts are allowed.
Fig. 39 shows an example where a different number of partitions is specified in each process (not
allowed by our proposal) and Fig. 40 shows an example where all processes provide the same
number of partitions (as mandated by our proposal).

a b c d e f g h i j k l

int MPIX_Pbcast_init(void *buf, int partitions,
MPI_Count count, MPI Datatype datatype,
int root, MPI_Comm comm,
MPI _Info info, MPI Request *request);

P0*

P1

P2

P3

p=4, c=3

p=3, c=4

p=1, c=12

p=2, c=6

buf (initially)

*: root

a b c d e f g h i j k l

a b c d e f g h i j k l

a b c d e f g h i j k l

a b c d e f g h i j k l

buf (after completion)

Figure 39 Setting up a partitioned broadcast operation. Each participating process specifies a different number
of partitions (p) and a corresponding number of elements per partition (c).

Fig. 41 shows a partial list of collective operations in their partitioned form. The functions
MPI Pready and MPI Parrived stay the same as in the case of point-to-point operations. In the case
of reduce-type operations, it should be noted that the proposed interface allows for operations
on partially received data and thus unlocks more overlap potential compared to the regular (non-
partitioned) variants of the reduce operation. The reduce functions supported by these operations
also include user-defined functions.

Besides the collective operations shown in Fig. 41, partitioned communication is also available
for the “v” and “w” variants and for neighborhood collectives.

75Daniel J Holmes et al. “Partitioned collective communication”. 2021 Workshop on Exascale MPI (ExaMPI). IEEE.
2021, pp. 9–17.

76Ibid.

SparCity 58

a

int MPIX_Preduce_init(void *sendbuf, void *recvbuf,
int partitions, MPI_Count count,
MPI Datatype datatype, MPI_Op op,
int root, MPI_Comm comm,
MPI _Info info, MPI Request *request);

P0*

P1

P2

P3

sendbuf

*: root

x

recvbuf (after completion)

x = a op b op c op d
b

c

d

Figure 40 Setting up a partitioned reduce operation. Here each participating process specifies the same number
of partitions to enable a simplified implementation.

Combining Software Offloading with Partitioned Communication Partitioned communication,
as defined for point-to-point operations by the MPI4.0 standard and extended for collective oper-
ations as described above, can be combined with software offloading. This could enable certain
optimization opportunities, such as for example computation on partially received messages (par-
titions), in partitioned point-to-point and collective operations. A prototypical implementation of
partitioned reduce, broadcast, and neighborhood collectives is planned in the future.

4.2.4 sparse computation use case

As future work, we plan to implement the proposed partitioned collective scheme using our
communication offload approach and test the benefits on a sparse computation use case. This use
case is the simulation of cardiac electrophysiology using a hybrid (MPI plus threads) approach,
developed by the Simula partner, employing an unstructured mesh using an explicit method.
The code for this application uses an iterative computational loop with MPI Neighbor alltoall v

outside of parallel region (executed by the master thread). Local SpMV (sparse matrix-vector
product) computation is performed in each iteration by multiple threads.

In each iteration, parts of the (updated) vector (depending on the unstructured mesh) must be
communicated to neighbor processes, according to the sparsity pattern given by the unstructured
mesh, where the number of neighbors can vary and communication can be overlapped with
computation. Previous investigations have indicated that using MPI communication operations
from multiple threads (MPI THREAD MULTIPLE can lead to degraded performance due to locking
and contention for communication queues in MPI. We plan to investigate if the halo exchange can
be more efficiently be implemented in terms of (partitioned) P2P communication plus software
offloading or with (partitioned) MPI Neighbor alltoall v collective plus software offloading.

SparCity 59

i n t MPIX Pbcast in i t (void * buf , i n t p a r t i t i o n s , MPI Count count ,
MPI Datatype datatype , i n t root , MPI Comm comm,
MPI Info info , MPI Request * request) ;

i n t MPIX Pgather ini t (const void * sendbuf , i n t sendparts ,
MPI Count sendcount , MPI Datatype sendtype ,
void * recvbuf , i n t recvparts ,
MPI Count recvcount , MPI Datatype recvtype ,
i n t root , MPI Comm comm, MPI Info info ,
MPI Request * request) ;

i n t M P I X P s c a t t e r i n i t (const void * sendbuf , i n t sendparts ,
MPI Count sendcount , MPI Datatype sendtype ,
void * recvbuf , i n t recvparts , MPI Count recvcount ,
MPI Datatype recvtype , i n t root ,
MPI Comm comm, MPI Info info , MPI Request * request) ;

i n t M P I X P a l l g a t h e r i n i t (const void * sendbuf , i n t sendparts ,
MPI Count sendcount , MPI Datatype sendtype ,
void * recvbuf , i n t recvpart , MPI Count recvcount ,
MPI Datatype recvtype , MPI Comm comm,
MPI Info info , MPI Request * request) ;

i n t M P I X P a l l t o a l l i n i t (const void * sendbuf , i n t sendparts ,
MPI Count sendcount , MPI Datatype sendtype ,
void * recvbuf , i n t recvpart , MPI Count recvcount ,
MPI Datatype recvtype , MPI Comm comm,
MPI Info info , MPI Request * request) ;

i n t MPIX Pal l reduce in i t (const void * sendbuf , void * recvbuf ,
i n t p a r t i t i o n s , MPI Count count ,
MPI Datatype datatype , MPI Op op ,
MPI Comm comm, MPI Info info ,
MPI Request * request) ;

Figure 41 A selected subset of proposed partitioned collective communication operations, based on the the
work of Holmes et al.77

SparCity 60

5 conclusions

Over the three years of the SparCity project, we have managed to create an extensive framework
of methods, software tools and libraries. As shown in this deliverable, as well as in the preceding
Deliverables 5.1 & 5.2, the SparCity framework covers many topics that can enhance sparse
computations involving sparse matrices, graphs and tensors. The related scientific results have
been published as research papers and open-source libraries and database. There is also good
reason to expect that some of the tools and libraries will be further developed by the respective
SparCity partners, because these are in line with their research profiles and future ambitions.
Overall, we consider the SparCity framework as a timely and useful input to the scientific
community, with also the potential of being adopted by other parties of interest.

SparCity 61

references

Adhianto. “HPCTOOLKIT: Tools for Performance Analysis of Optimized Parallel Programs
Http://Hpctoolkit.Org”. Concurr. Comput.: Pract. Exper. 22.6 (2010), pp. 685–701. issn: 1532-
0626.

Agelastos. The Lightweight Distributed Metric Service: A Scalable Infrastructure for Continuous Moni-
toring of Large Scale Computing Systems and Applications. English. Tech. rep. SAND2014-19868C.
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab.
(SNL-CA), Livermore, CA (United States), 2014. doi: 10.1109/SC.2014.18. url: https:
//www.osti.gov/biblio/1315267 (visited on 09/27/2021).

Aksar. “E2EWatch: An End-to-End Anomaly Diagnosis Framework for Production HPC Sys-
tems””. Euro-Par 2021: Parallel Processing. Springer International Publishing, 2021, pp. 70–85.

Amazon Web Services. Amazon EC2 G5 Instances. https://aws.amazon.com/ec2/instance-
types/g5/. 2023.

Amestoy, Patrick R., Timothy A. Davis, and Iain S. Duff. “Algorithm 837: AMD, an Approximate
Minimum Degree Ordering Algorithm”. ACM Trans. Math. Softw. 30.3 (2004), pp. 381–388.
issn: 0098-3500. doi: 10.1145/1024074.1024081.

Azad, Ariful et al. “The reverse Cuthill-McKee algorithm in distributed-memory”. 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). IEEE. 2017, pp. 22–31.

Brandt. Lightweight Distributed Metric Service (LDMS): Run-time Resource Utilization Monitoring.
English. Tech. rep. SAND2013-6521C. Sandia National Lab. (SNL-CA), Livermore, CA (United
States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States), 2013. url: https:
//www.osti.gov/biblio/1106397 (visited on 09/27/2021).

Breiter, Sergej, James D Trotter, and Karl Fürlinger. “Modelling Data Locality of Sparse Matrix-
Vector Multiplication on the A64FX”. Proceedings of the SC’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and Analysis. 2023, pp. 1334–1342.

Breiter, Sergej et al. “A Profiling-Based Approach to Cache Partitioning of Program Data”. Inter-
national Conference on Parallel and Distributed Computing: Applications and Technologies. Springer.
2022, pp. 453–463.

Catalyurek, U.V. and C. Aykanat. “Hypergraph-partitioning-based decomposition for parallel
sparse-matrix vector multiplication”. IEEE Transactions on Parallel and Distributed Systems 10.7
(1999), pp. 673–693. doi: 10.1109/71.780863.

Chen, Hongzheng et al. “Krill: a compiler and runtime system for concurrent graph processing”.
Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis. 2021, pp. 1–16.

Choi, Jee Whan et al. “A roofline model of energy”. 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing. IEEE. 2013, pp. 661–672.

Cluster Cockpit. https://www.clustercockpit.org/. Accessed on 30 Sep 2023.
Coutinho, Afonso Silva Mendes. “CARM-based approach for sparse computation characterisa-

tion”. MA thesis. Instituto Superior Técnico, Universidade de Lisboa, 2022.
Cuthill, E. and J. McKee. “Reducing the Bandwidth of Sparse Symmetric Matrices”. Proceedings

of the 1969 24th National Conference. Association for Computing Machinery, 1969, pp. 157–172.
doi: 10.1145/800195.805928.

Cuthill, Elizabeth. “Several Strategies for Reducing the Bandwidth of Matrices”. Sparse Matrices
and their Applications. Springer, 1972, pp. 157–166.

Cuthill, Elizabeth and James McKee. “Reducing the bandwidth of sparse symmetric matrices”.
Proceedings of the 1969 24th national conference. 1969, pp. 157–172.

SparCity 62

https://doi.org/10.1109/SC.2014.18
https://www.osti.gov/biblio/1315267
https://www.osti.gov/biblio/1315267
https://aws.amazon.com/ec2/instance-types/g5/
https://aws.amazon.com/ec2/instance-types/g5/
https://doi.org/10.1145/1024074.1024081
https://www.osti.gov/biblio/1106397
https://www.osti.gov/biblio/1106397
https://doi.org/10.1109/71.780863
https://www.clustercockpit.org/
https://doi.org/10.1145/800195.805928

Davis, Tim. Sparse Matrix Collection. Accessed on 5th October 2023. url: https://sparse.tamu.
edu/.

Davis, Timothy A. and Yifan Hu. “The University of Florida Sparse Matrix Collection”. ACM
Trans. Math. Softw. 38.1 (2011). issn: 0098-3500. doi: 10.1145/2049662.2049663.

Dhandhania, Sunidhi et al. “Explaining the Performance of Supervised and Semi-Supervised
Methods for Automated Sparse Matrix Format Selection”. 50th International Conference on
Parallel Processing Workshop. 2021, pp. 1–10.

Ding, Nan and Samuel Williams. “An Instruction Roofline Model for GPUs”. 2019 IEEE/ACM Per-
formance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS).
2019, pp. 7–18. doi: 10.1109/PMBS49563.2019.00007.

Doerfler, Douglas et al. “Applying the roofline performance model to the intel xeon phi knights
landing processor”. High Performance Computing: ISC High Performance 2016 International Work-
shops, ExaComm, E-MuCoCoS, HPC-IODC, IXPUG, IWOPH, Pˆ 3MA, VHPC, WOPSSS, Frankfurt,
Germany, June 19–23, 2016, Revised Selected Papers 31. Springer. 2016, pp. 339–353.

Dongarra, Jack and Michael A Heroux. “Toward a new metric for ranking high performance
computing systems”. Sandia Report, SAND2013-4744 312 (2013), p. 150.

Filipovič, Jiřı́ et al. “Optimizing CUDA code by kernel fusion: application on BLAS”. The Journal
of Supercomputing 71.10 (2015), pp. 3934–3957.

Friedemann. “Linked Data Architecture for Assistance and Traceability in Smart Manufacturing”.
MATEC Web of Conferences 304 (2019), p. 04006. doi: 10.1051/matecconf/201930404006.

Ganglia. Monitoring system. 2022. url: http : / / ganglia . sourceforge . net/ (visited on
12/12/2022).

George, Alan. “Nested Dissection of a Regular Finite Element Mesh”. SIAM Journal on Numerical
Analysis 10.2 (1973), pp. 345–363. doi: 10.1137/0710032.

George, Alan and Joseph W. H. Liu. “An Implementation of a Pseudoperipheral Node Finder”.
ACM Transactions on Mathematical Software 5.3 (1979), pp. 284–295. doi: 10.1145/355841.
355845.

— “The evolution of the minimum degree ordering algorithm”. SIAM Review 31.1 (1989), pp. 1–
19.

George, Alan and David R. McIntyre. “On the Application of the Minimum Degree Algorithm
to Finite Element Systems”. SIAM Journal on Numerical Analysis 15.1 (1978), pp. 90–112. issn:
00361429. url: http://www.jstor.org/stable/2156565.

Gibbs, Norman E., William G. Poole, and Paul K. Stockmeyer. “An Algorithm for Reducing the
Bandwidth and Profile of a Sparse Matrix”. SIAM Journal on Numerical Analysis 13.2 (1976),
pp. 236–250. issn: 00361429.

Gilbert, J. R. and R. E. Tarjan. “The Analysis of a Nested Dissection Algorithm”. Numer. Math.
50.4 (1987), pp. 377–404. issn: 0029-599X. doi: 10.1007/BF01396660.

Haque, Sardar Anisul and Shahadat Hossain. “A Note on the Performance of Sparse Matrix-
vector Multiplication with Column Reordering”. 2009 International Conference on Computing,
Engineering and Information. 2009, pp. 23–26. doi: 10.1109/ICC.2009.40.

Heras, D.B. et al. “Modeling and improving locality for the sparse-matrix–vector product on cache
memories”. Future Generation Computer Systems 18.1 (2001), pp. 55–67. issn: 0167-739X. doi:
10.1016/S0167-739X(00)00075-3.

Holmes, Daniel J et al. “Partitioned collective communication”. 2021 Workshop on Exascale MPI
(ExaMPI). IEEE. 2021, pp. 9–17.

Ilic, Aleksandar, Frederico Pratas, and Leonel Sousa. “Beyond the roofline: Cache-aware power
and energy-efficiency modeling for multi-cores”. IEEE Transactions on Computers 66.1 (2016),
pp. 52–58.

SparCity 63

https://sparse.tamu.edu/
https://sparse.tamu.edu/
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1109/PMBS49563.2019.00007
https://doi.org/10.1051/matecconf/201930404006
http://ganglia.sourceforge.net/
https://doi.org/10.1137/0710032
https://doi.org/10.1145/355841.355845
https://doi.org/10.1145/355841.355845
http://www.jstor.org/stable/2156565
https://doi.org/10.1007/BF01396660
https://doi.org/10.1109/ICC.2009.40
https://doi.org/10.1016/S0167-739X(00)00075-3

Ilic, Aleksandar, Frederico Pratas, and Leonel Sousa. “Cache-aware roofline model: Upgrading
the loft”. IEEE Computer Architecture Letters 13.1 (2013), pp. 21–24.

Ismayilov, Ismayil et al. “Multi-GPU Communication Schemes for Iterative Solvers: When CPUs
are Not in Charge”. Proceedings of the 37th International Conference on Supercomputing. 2023,
pp. 192–202.

Karypis, George and Vipin Kumar. “A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs”. SIAM Journal on Scientific Computing 20.1 (1998), pp. 359–392. doi: 10.
1137/S1064827595287997.

Kolodziej, Scott P et al. “The suitesparse matrix collection website interface”. Journal of Open
Source Software 4.35 (2019), p. 1244.

Koskela, Tuomas et al. “A novel multi-level integrated roofline model approach for performance
characterization”. High Performance Computing: 33rd International Conference, ISC High Perfor-
mance 2018, Frankfurt, Germany, June 24-28, 2018, Proceedings 33. Springer. 2018, pp. 226–245.

Langguth, Johannes et al. “Parallel performance modeling of irregular applications in cell-centered
finite volume methods over unstructured tetrahedral meshes”. Journal of Parallel and Distributed
Computing 76 (2015), pp. 120–131. doi: 10.1016/j.jpdc.2014.10.005.

Li, Xiaoping, Yadi Wang, and Rubén Ruiz. “A survey on sparse learning models for feature
selection”. IEEE transactions on cybernetics 52.3 (2020), pp. 1642–1660.

Liu, Wai-Hung and Andrew H Sherman. “Comparative analysis of the Cuthill-McKee and the
reverse Cuthill-McKee ordering algorithms for sparse matrices”. SIAM Journal on Numerical
Analysis 13.2 (1976), pp. 198–213.

Marques, Diogo et al. “Application-driven cache-aware roofline model”. Future Generation Com-
puter Systems 107 (2020), pp. 257–273.

Mazloumi, Abbas, Xiaolin Jiang, and Rajiv Gupta. “Multilyra: Scalable distributed evaluation of
batches of iterative graph queries”. 2019 IEEE International Conference on Big Data (Big Data).
IEEE. 2019, pp. 349–358.

McCalpin, John. “Memory bandwidth and machine balance in high performance computers”.
IEEE Technical Committee on Computer Architecture Newsletter (1995), pp. 19–25.

Merrill, Duane and Michael Garland. “Merge-Based Sparse Matrix-Vector Multiplication (SpMV)
Using the CSR Storage Format”. ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. 2016.

— “Merge-based sparse matrix-vector multiplication (spmv) using the csr storage format”. Acm
Sigplan Notices 51.8 (2016), pp. 1–2.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 4.0. 2021. url:
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf.

Milenković, Katarina. “Enabling Knowledge Management in Complex Industrial Processes Using
Semantic Web Technology”. English. Proceedings of the 2019 International Conference on The-
ory and Applications in the Knowledge Economy. 2019 International Conference on Theory and
Applications in the Knowledge Economy, TAKE 2019 ; Conference date: 03-07-2019 Through
05-01-2020. 2019. url: https://www.take-conference2019.com/.

Murphy, Richard C et al. “Introducing the Graph 500”. Cray Users Group (CUG) 19 (2010), pp. 45–
74.

Nagios. Nagios. https://www.nagios.org/. Accessed: 2022-12-12. 2022.
Nowak, Andrzej and Georgios Bitzes. The overhead of profiling using PMU hardware counters. 2014.

doi: 10.5281/zenodo.10800. url: https://doi.org/10.5281/zenodo.10800.
Nvidia Corporation. NVIDIA CUDA Compiler Driver NVCC. 2022. url: https://docs.nvidia.

com/datacenter/tesla/pdf/NVIDIA_Data_Center_GPU_Driver_Release_Notes_510_v1.0.

pdf.

SparCity 64

https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1016/j.jpdc.2014.10.005
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.take-conference2019.com/
https://www.nagios.org/
https://doi.org/10.5281/zenodo.10800
https://doi.org/10.5281/zenodo.10800
https://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_Data_Center_GPU_Driver_Release_Notes_510_v1.0.pdf
https://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_Data_Center_GPU_Driver_Release_Notes_510_v1.0.pdf
https://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_Data_Center_GPU_Driver_Release_Notes_510_v1.0.pdf

Oliker, Leonid et al. “Effects of Ordering Strategies and Programming Paradigms on Sparse Matrix
Computations”. SIAM Review 44.3 (2002), pp. 373–393. doi: 10.1137/S00361445003820.

Pan, Peitian and Chao Li. “Congra: Towards efficient processing of concurrent graph queries
on shared-memory machines”. 2017 IEEE International Conference on Computer Design (ICCD).
IEEE. 2017, pp. 217–224.

Performance Co-Pilot. https://pcp.io/. Accessed on 30 Sep 2023.
Pinar, Ali and Michael T. Heath. “Improving Performance of Sparse Matrix-Vector Multiplica-

tion”. Proceedings of the 1999 ACM/IEEE Conference on Supercomputing. Portland, Oregon, USA:
Association for Computing Machinery, 1999. doi: 10.1145/331532.331562.

Röhl, Thomas et al. “LIKWID Monitoring Stack: A Flexible Framework Enabling Job Specific Per-
formance monitoring for the masses”. 2017 IEEE International Conference on Cluster Computing
(CLUSTER). 2017, pp. 781–784. doi: 10.1109/CLUSTER.2017.115.

Röhl, Thomas et al. “Overhead Analysis of Performance Counter Measurements”. 2014 43rd
International Conference on Parallel Processing Workshops. 2014, pp. 176–185. doi: 10.1109/
ICPPW.2014.34.

Roy. “PerfAugur: Robust diagnostics for performance anomalies in cloud services”. 2015 IEEE
31st International Conference on Data Engineering. 2015, pp. 1167–1178. doi: 10.1109/ICDE.
2015.7113365.

Sasongko, Muhammad Aditya et al. “Precise Event Sampling on AMD Versus Intel: Quantitative
and Qualitative Comparison”. IEEE Transactions on Parallel and Distributed Systems 34.5 (2023),
pp. 1594–1608. issn: 1558-2183. doi: 10.1109/TPDS.2023.3257105.

Shun, Julian and Guy E Blelloch. “Ligra: a lightweight graph processing framework for shared
memory”. Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel
programming. 2013, pp. 135–146.

Strohmaier, Erich. “TOP500 supercomputer”. Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing. Tampa, Florida: Association for Computing Machinery, 2006, 18–es. doi:
10.1145/1188455.1188474. url: https://doi.org/10.1145/1188455.1188474.

Team, The Smartmontools. Smartmontools. Accessed on 5th October 2023. url: https://www.
smartmontools.org/.

Trotter, James D et al. “Bringing Order to Sparsity: A Sparse Matrix Reordering Study on Multicore
CPUs”. Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. 2023, pp. 1–13.

Unat, Didem et al. “ExaSAT: An exascale co-design tool for performance modeling”. The In-
ternational Journal of High Performance Computing Applications 29.2 (2015), pp. 209–232. doi:
10.1177/1094342014568690. url: https://doi.org/10.1177/1094342014568690.

Vaidyanathan, Karthikeyan et al. “Improving concurrency and asynchrony in multithreaded MPI
applications using software offloading”. Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 2015, pp. 1–12.

Wahib, Mohamed and Naoya Maruyama. “Scalable kernel fusion for memory-bound GPU ap-
plications”. SC’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE. 2014, pp. 191–202.

Wang, Endong et al. “Intel Math Kernel Library”. High-Performance Computing on the Intel® Xeon
Phi™: How to Fully Exploit MIC Architectures. Springer International Publishing, 2014, pp. 167–
188. doi: 10.1007/978-3-319-06486-4_7. url: https://doi.org/10.1007/978-3-319-
06486-4_7.

Wang, Guibin, YiSong Lin, and Wei Yi. “Kernel fusion: An effective method for better power
efficiency on multithreaded GPU”. 2010 IEEE/ACM Int’l Conference on Green Computing and

SparCity 65

https://doi.org/10.1137/S00361445003820
https://pcp.io/
https://doi.org/10.1145/331532.331562
https://doi.org/10.1109/CLUSTER.2017.115
https://doi.org/10.1109/ICPPW.2014.34
https://doi.org/10.1109/ICPPW.2014.34
https://doi.org/10.1109/ICDE.2015.7113365
https://doi.org/10.1109/ICDE.2015.7113365
https://doi.org/10.1109/TPDS.2023.3257105
https://doi.org/10.1145/1188455.1188474
https://doi.org/10.1145/1188455.1188474
https://www.smartmontools.org/
https://www.smartmontools.org/
https://doi.org/10.1177/1094342014568690
https://doi.org/10.1177/1094342014568690
https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1007/978-3-319-06486-4_7

Communications & Int’l Conference on Cyber, Physical and Social Computing. IEEE. 2010, pp. 344–
350.

Wang, Yangzihao et al. “Gunrock: A high-performance graph processing library on the GPU”.
Proceedings of the 21st ACM SIGPLAN symposium on principles and practice of parallel programming.
2016, pp. 1–12.

Weaver, Vincent M. et al. “Measuring Energy and Power with PAPI”. 2012 41st International
Conference on Parallel Processing Workshops. 2012, pp. 262–268. doi: 10.1109/ICPPW.2012.39.

Xue, Jilong et al. “Seraph: an efficient, low-cost system for concurrent graph processing”. Proceed-
ings of the 23rd international symposium on High-performance parallel and distributed computing.
2014, pp. 227–238.

Yzelman, A. N. and Rob H. Bisseling. “Cache-Oblivious Sparse Matrix–Vector Multiplication by
Using Sparse Matrix Partitioning Methods”. SIAM Journal on Scientific Computing 31.4 (2009),
pp. 3128–3154. doi: 10.1137/080733243.

Zhang, Yunming et al. “Graphit: A high-performance graph dsl”. Proceedings of the ACM on
Programming Languages 2.OOPSLA (2018), pp. 1–30.

Zhao, Haoran et al. “Exploring Better Speculation and Data Locality in Sparse Matrix-Vector
Multiplication on Intel Xeon”. 2020 IEEE 38th International Conference on Computer Design
(ICCD). 2020, pp. 601–609. doi: 10.1109/ICCD50377.2020.00105.

Zhao, Jin et al. “GraphM: an efficient storage system for high throughput of concurrent graph pro-
cessing”. Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. 2019, pp. 1–14.

SparCity 66

https://doi.org/10.1109/ICPPW.2012.39
https://doi.org/10.1137/080733243
https://doi.org/10.1109/ICCD50377.2020.00105

6 history of changes

Version Author(s) Date Comment
0.1 Xing Cai 15.03.2024 Initial draft skeleton
0.2 Johannes Langguth 21.03.2024 Added mostly old text in 2.1. Will be modernized.
0.3 Beyza Cavusoglu 23.03.2024 Added SparseBase section
0.4 Didem Unat 24.03.2024 Added Graph Fusion section
0.5 Sinan Ekmekcibasi 25.03.2024 Completed SparseBase section.
0.6 Sergej Breiter 26.03.2024 Added input about A64FX cache profiler.
0.7 Tuğba Torun 27.03.2024 Added input about sparse matrix/tensor generator.
0.8 Emre Duzakın 27.03.2024 Added input about partitioner utility API.
0.9 Karl Fuerlinger 27.03.2024 Added input about PI communication offloading.
1.0 Kamer Kaya 30.03.2024 Added input about SuperTwin and SparseVis.
1.1 Johannes Langguth 30.03.2024 More input about ML-based recommendation methods.
1.2 Xing Cai 31.03.2024 Finalized the entire deliverable.

Table 12 Document History of Changes

SparCity 67

	Introduction
	Objectives of this deliverable
	Work Performed
	Deviations and Counter Measures

	SparCity methods
	ML-based recommendation methods
	ML-based sparse matrix format selection
	ML-based SpMV algorithm selection
	ML-based sparse reordering performance prediction
	Extended reordering performance experiments

	Automated kernel fusion
	Kernel Fusion Framework
	Evaluation
	Results

	SparCity tools
	Sparse-aware roofline modeling
	A64FX cache partitioning profiler
	SuperTwin
	SparseViz
	Sparse matrix/tensor generator
	Partitioning utility API

	SparCity libraries
	SparseBase
	Reordering
	Partitioning
	Feature Extraction

	MPI communication offloading
	Software Architecture
	Microbenchmarks
	Partitioned Communication
	Sparse Computation Use Case

	Conclusions
	History of Changes

