Fourth-Order Exhaustive Epistasis Detection for the xPU Era

Ricardo Nobre¹, Aleksandar Ilic¹, Sergio Santander-Jiménez² and Leonel Sousa¹

¹ INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal {ricardo.nobre,aleksandar.ilic,leonel.sousa}@inesc-id.pt

² University of Extremadura (UNEX), Cáceres, Spain sesaji@unex.es

50th International Conference on Parallel Processing (ICPP)
August 9-12, 2021 in Virtual Chicago, IL

Association Studies Identify Correlation w/ Genotype

markers (e.g. SNPs) most correlated w/ trait

output used in prevention / treatment, reducing spread of infectious diseases

Single Nucleotide Polymorphism

variation of single nucleotide in genome of $\geq 1\%$ of a population

Epistasis Detection as a Combinatorial Problem

Some phenotypes depend on high-order interactions^{1,2}

Total num comb. of SNPs:

M!

k!(M-k)!

2 alleles per SNP

major allele (X) highest frequency

minor allele (x) lowest frequency

Embarrassingly parallel workload: repeat <u>3 steps</u>

- 1 Count genotype freq.
- Compute scores
- 3 Reduce scores

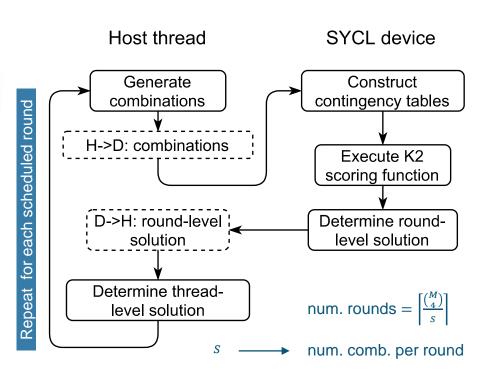
3 Possible Genotypes

Homozygous Heterozygous: Homozygous major: XX(0) Xx(1) minor: xx(2)

^[1] J. Sun, Hidden risk genes with high-order intragenic epistasis in Alzheimer's disease. J Alzheimers Dis, 2014

^[2] C. Im, Genome-wide search for higher order epistasis as modifiers of treatment effects on bone mineral density in childhood cancer survivors. Eur J Hum Genet, 2018

Suitable for Heterogeneous Parallel Architectures



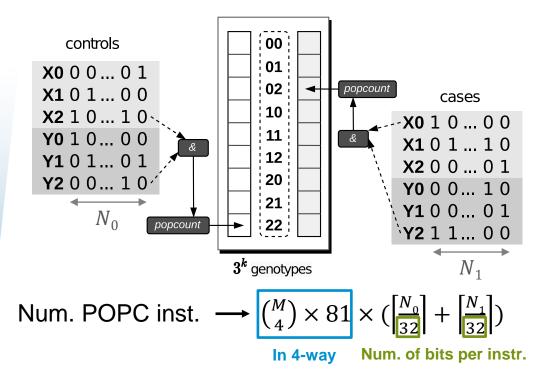
SoA for accelerators focuses on 2/3-way searches and is usually tied to proprietary technologies

Proposed solution:

- Implem. in SYCL for HW interop.
- Specialized to fourth-order explor. with support for GPU accelerators

CPU (Host) + GPU (Device) is a suitable pairing for achieving high epistasis detection throughput

Contingency Table Construction (Example for 2-way)



Bitwise AND and POPC (count num. of set bits) instr. in CPUs¹ and GPUs²

POPC in SYCL through sycl::popcount()

Multiple samples processed per POPC instruction

 $3 \times (N_0 + N_1)$ bits per SNP to represent information for all cases and controls

^[1] X. Wan, BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies. AJHG, 2010

^[2] C. Ponte-Fernández, Fast search of third-order epistatic interactions on CPU and GPU clusters. IJHPCA, 2020

Optimizing Calculations in Fourth-Order Searches

Knowledge specific to input data can be used to reduce amount of instr. exec.

Remaining frequencies derived using simple arithmetic operations from:

- 16 genotypes (w/ SNPs of type 0 or 1)
- Precalculated freq. for third-order comb.

Close to $5 \times$ less inst. executed (from $\frac{81}{16}$) when processing challenging datasets

32 genotypes (4 x 8)

CALC_A_B_C(a,b,c, A_idx, B_idx, C_idx)
CALC_A_B_D(a,b,d, A_idx, B_idx, D_idx)
CALC_A_C_D(a,c,d, A_idx, C_idx, D_idx)
CALC_B_C_D(b,c,d, B_idx, C_idx, D_idx)

→ 24 genotypes (6 x 4)

CALC_A_B_C(a,b,2, A_idx, B_idx, C_idx)
CALC_A_B_C(a,2,c, A_idx, B_idx, C_idx)
CALC_A_B_C(2,b,c, A_idx, B_idx, C_idx)
CALC_A_B_D(a,2,d, A_idx, B_idx, D_idx)
CALC_A_B_D(2,b,d, A_idx, B_idx, D_idx)
CALC_A_C_D(2,c,d, A_idx, C_idx, D_idx)

¥ 8 genotypes (4 x 2)

CALC_A_B_C(a,2,2, A_idx, B_idx, C_idx)
CALC_A_B_C(2,b,2, A_idx, B_idx, C_idx)
CALC_A_B_C(2,2,c, A_idx, B_idx, C_idx)
CALC_B_C_D(2,2,d, B_idx, C_idx, D_idx)

↓ 1 genotype (1 x 1)

 $CALC_A_B_C(2,2,2, A_idx, B_idx, C_idx)$

Experimental Setup and Performance Metric

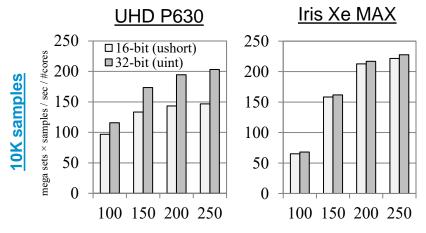
Systems	Intel CPU (arch.) #cores freq.	iGPU / dGPU (arch.) # stream cores (freq.) memory (band.)	DRAM	Operating System
S1	(2×) Xeon Gold 6128 (Skylake) 2×6 3.4–3.7GHz		192GB DDR4	Ubuntu 18.04
S2	Xeon E-2176G (Coffee Lake) 6 3.7–4.7GHz	Intel UHD Graphics P630 (Gen9.5) 192 (1200MHz) system shared	64GB DDR4	Ubuntu 20.04
S 3	Core i9-10920X (Cascade Lake) 12 3.5-4.6GHz	Intel Iris Xe MAX (Gen12) 768 (1650MHz) 4GB (68.26 GB/s)	32GB DDR4	Ubuntu 20.04
S4	Core i9-10980XE (Cascade Lake) 18 3.0-4.6GHz	NVIDIA Titan RTX (Turing) 4608 (1770MHz) 24GB (672.0 GB/s)	128GB DDR4	CentOS 7.8

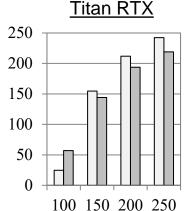
SYCL source code compiled with the Intel OneAPI DPC++ compiler

Runs performed with synthetic datasets with half cases/controls

Performance metric is the number of combinations of SNPs processed per second (scaled to sample size)

Experimental Results w/ GPU Acceleration

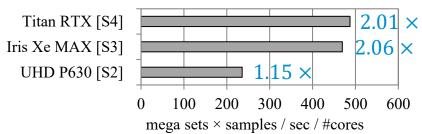




Best param. depends on the targeted GPU:

- 16-bit improved perf. on Titan RTX
- Perf. drop on UHD P630 / Iris Xe MAX

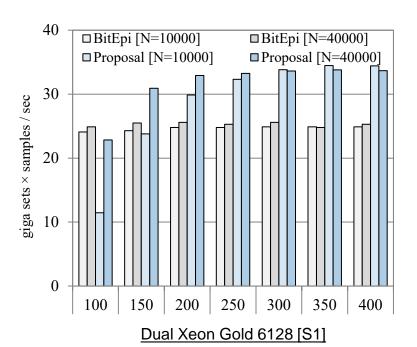
250 SNPs x 80K samples



Similar perf. per stream core on Gen12 and Turing GPU architectures

Up to 2245 giga ($\times 10^9$) sets of SNPs per second on system S4 (Titan RTX)

Performance Using CPU as the SYCL Device



Overall higher perf. than BitEpi¹ $1.33 \times (Xeon Gold)$ and $1.13 \times (Core i9)$

BitEpi uses a data repres. and calculation method specialized for fast execution on modern CPUs

Higher performance on CPUs while achieving efficient execution on GPU devices

[1] A. Bayat, BitEpi: A Fast and Accurate Exhaustive Higher-Order Epistasis Search. bioRxiv, 2020

Conclusions

(evaluated on 4 systems)

Implem. in SYCL for high HW interoperability

(1.33 × faster on Xeon Gold server)
Higher perf. on CPU
than related art

(65 \times speedup w/ GPU)

Use of GPUs provides significant perf. increase

Ongoing work

reduce memory requirements of the proposed algorithm

add support for heterogeneous clusters w/ additional architectures (e.g. custom HW on FPGAs)

DEFINING TECHNOLOGY

Thank you!

EUROPEAN UNION

European Regional Development Fund

This work was supported by the FCT (Fundação para a Ciência e a Tecnologia, Portugal), ERDF (European Regional Development Fund, EU) and EuroHPC Joint Undertaking through the projects UIDB/50021/2020, LISBOA-01-0145-FEDER-031901 (PTDC/CCI-COM/31901/2017, HiPErBio) and grant agreement No 956213 (SparCity). We would also like to thank Intel Corporation for DevCloud and Iris Xe MAX GPU early access.

Related work by the same authors:

[IPDPS 2020] R. Nobre, A. Ilic, S. Santander-Jiménez, and L. Sousa. Exploring the Binary Precision Capabilities of Tensor Cores for Epistasis Detection.

[JSSPP 2020] R. Nobre, S. Santander-Jiménez, L. Sousa, and A. Ilic. Accelerating 3-way Epistasis Detection with CPU+GPU processing.

[TPDS 2021] R. Nobre, A. Ilic, S. Santander-Jiménez, and L. Sousa. Retargeting Tensor Accelerators for Epistasis Detection.