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1 introduction

The SparCity project is funded by EuroHPC JU (the European High Performance Computing
Joint Undertaking) under the 2019 call of Extreme Scale Computing and Data Driven Technologies
for research and innovation actions. SparCity aims to create a supercomputing framework
that will provide efficient algorithms and coherent tools specifically designed for maximizing
the performance and energy efficiency of sparse computations on emerging High Performance
Computing (HPC) systems, while also opening up new usage areas for sparse computations in
data analytics and deep learning.

Sparse computations are commonly found at the heart of many important applications, but
at the same time it is challenging to achieve high performance when performing the sparse
computations. SparCity delivers a coherent collection of innovative algorithms and tools for
enabling both high efficiency of sparse computations on emerging hardware platforms. More
specifically, the objectives of the project are:

• to develop a comprehensive application and data characterization mechanism for sparse
computation based on the state-of-the-art analytical and machine-learning-based perfor-
mance and energy models,

• to develop advanced node-level static and dynamic code optimizations designed for mas-
sive and heterogeneous parallel architectures with complex memory hierarchy for sparse
computation,

• to devise topology-aware partitioning algorithms and communication optimizations to boost
the efficiency of system-level parallelism,

• to create digital SuperTwins of supercomputers to evaluate and simulate what-if hardware
scenarios,

• to demonstrate the effectiveness and usability of the SparCity framework by enhancing
the computing scale and energy efficiency of challenging real-life applications.

• to deliver a robust, well-supported and documented SparCity framework into the hands
of computational scientists, data analysts, and deep learning end-users from industry and
academia.

1.1 objectives of this deliverable

The objective of this deliverable is to document sparse-aware performance, power and energy-
efficiency models for devices with emerging architectures. Through the identification of the
potential for performance and energy-efficiency of different sparse computation workloads, the
purpose of these models is to detect compute and memory bottlenecks and suggest optimiza-
tions. These optimizations can include modifications to the kernel performing sparse computa-
tions that is under study, suggesting specific core and memory frequencies through exploiting
Dynamic Voltage and Frequency Scaling (DVFS), and/or in regard to hardware design decisions
that can be taken to improve execution given a metric of interest. Another objective is to de-
velop profiling tools for identifying and analysing data movement. Tools capable of performing
inter-process/inter-thread communication profiling, reuse distance analysis and cache partition-
ing/mapping are of utmost importance to achieve efficient mapping of the different types of
sparse computations to emerging hardware architectures and devices. Finally, advances in the
development of Digital SuperTwin targeting supercomputing platforms, which can seamlessly
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integrate the proposed models and tools, enable a high-throughput and precise collection of data
and more insightful modeling, which paired with advanced visualization capabilities results in a
more straightforward identification of how to take action.

1.2 work performed

In this deliverable, we provide an extensive study focused on the strengths and usability of the
proposed extensions to the Cache-Aware Roofline Model (CARM) for efficient sparse computing
(sparse CARM), for which a new construction methodology and a novel micro-benchmarking
strategy have been proposed as part of Deliverables 1.2 and 4.2 of the SparCity project. In addi-
tion, in this deliverable, we include in-depth explanations on the complete model interpretation
methodology and usability of the proposed model, and we report the outcomes of its evaluation in
the context of the use of matrix reordering techniques applied on synthetic and real-world sparse
matrices. We also provide a novel roofline-based evaluation strategy that aims at assessing the
variation in performance, power consumption and energy efficiency for a range of sparse kernels’
Arithmetic Intensity (AI)s when scaling the operating frequency of the CPU cores. Furthermore,
a performance analysis of an SpMV hand-tuned assembly implementation has been performed
on a RISC-V microarchitecture. Also relying on CARM, the range of arithmetic intensities of
the used algorithm has been thoroughly examined taking into account the cache dynamics of
the targeted microprocessor. The compiled knowledge and modeling techniques can be used
to identify the demands of sparse computations on current platforms with RISC-V processors
and/or to guide the design of novel more capable and domain-specific processors for efficient
sparse computations.

Sparse Matrix-Matrix Multiplication (SpMM) methods relying on different sparse formats,
and considering different sparsity levels, have been profiled using different combinations of core
and memory frequencies on a state-of-the-art GPU across both traditional CUDA cores and AI-
oriented tensor cores. The different SpMM alternatives have been cross-compared, using as a
baseline a state-of-the-art General Matrix Multiplication (GEMM) implementation, which has also
been tuned with DVFS. Several applications rely on contractions between tensors of other orders,
such as Tensor Times Matrix (TTM), which represents a contraction between a multi-dimensional
tensor of arbitrary order and a second-order tensor. We derived approaches tackling sparse TTM
and examined their performance bounds at processing both real and synthetic inputs on CPU
and GPU microarchitectures. In addition, this deliverable compiles insights resulting from the
exploration for sparse matrix operations of DVFS, a key mechanism of today’s computing devices
to enable achieving high levels of performance and energy-efficiency.

We extended the profiling tools elaborated in Deliverable 1.2 to target AMD x86 microar-
chitectures. Low-overhead inter-thread communication (ComDetective) and reuse distance
(ReuseTracker) analysis is achieved using the instruction-based sampling (IBS) facility and
debug registers present in AMD processors. These tools have relevant features not available in
other profiling tools, such as the capability of taking into account true and false sharing and
measuring reuse distance in private and shared caches at a low overhead. Those features have
been implemented through modification of a Linux kernel module that allows interfacing with
the IBS hardware. The tools have been experimentally evaluated on a set of representative bench-
marks, achieving high accuracy at a lower overhead than cycle accurate simulators and code
instrumentation tools. Furthermore, we analyzed the impact of the cache partitioning methods
proposed in Deliverable 1.2 in the context of SpMV execution targeting the A64FX processor,
which has an embedded cache partitioning mechanism named sector cache. Partitioning and
mapping program objects to specific cache partitions is performed at runtime through the use of
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compiler directives. Experimental evaluation demonstrated that using the sector cache allowed
in most cases to improve execution in regard to performance and memory bandwidth utilization
when processing matrices from cardiac electrophysiology. Relying on dynamic binary instrumen-
tation, we developed a profiling tool that predicts the number of cache misses, with and without
the use of the sector cache, from reuse distance histograms. The predictions produced by the
profiling tool integrating the proposed cache partitioning methods have been demonstrated to
closely match real measurements.

The initial stages of designing a prototype of SuperTwin, a digital replication framework,
had been presented in Deliverable 1.2. In this deliverable, we document new developments for
this framework, to which several novel and advanced features have been added. The current
version of SuperTwin has additional augmentation and semantical query abilities, as-well new
benchmarking capabilities, automatic generation of dashboards with support for real-time and
per-request monitoring, and CARM modeling with integrated visualization. SuperTwin has been
evaluated in regard to the throughput and integrity, as part of a study performed on four different
systems under different sampling frequencies and with a varying amount of reported events.

1.3 deviations and counter measures

There was no deviation from the work plan.

1.4 resources

As also envisioned in the project proposal, the herein elaborated modeling approaches had
undergone further improvements and developments over the initial ones reported in the previous
deliverables. As such, it is expected that further extensions of the proposed models and tools
will be reported in subsequent deliverables, as well as maintained and regularly updated on the
respective SparCity Github repositories.

2 cache-aware roofline modeling for efficient

sparse computing and hardware co-design

2.1 sparse carm: improving roofline insightfulness for

sparse computations

In order to enable accurate measurement of performance and power consumption upper-bounds
of the micro-architecture when performing sparse computations, we proposed a novel micro-
benchmarking strategy in Deliverable 4.2 of the SparCity project. In Deliverable 1.2, we also
proposed a new methodology for sparse-aware CARM construction, which relies on the proposed
micro-benchmarking strategy and is capable of more accurately characterizing sparse computation
kernels and their ability to utilize the micro-architecture computation resources. The sparse-
aware CARM is also able to provide more precise insights regarding the bottlenecks of sparse
computations, as well as, to identify the best optimization steps that should be considered to
improve their performance. In this deliverable, we provide an extensive study that demonstrates
the insightfulness and usability of the sparse-aware CARM, while we also reveal the complete
construction and interpretation methodology behind the proposed model. Furthermore, an
in-depth validation and characterization is performed using a set of synthetic and real-world
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sparse matrices from standard matrix collections (e.g. Suite Sparse1) in both single- and multi-
threaded execution scenarios. For this evaluation, we also apply several of the most commonly
used reordering techniques for sparse matrices: Reverse Cuthill-McKee (RCM), Approximate
Minimum Degree (AMD), Nested Dissection (ND), GrayRO based on Zhao et.al.’s work2 and
two algorithms from the Patoh library.3 By using the proposed model to visualise the changes
in cache locality, we aim at verifying the ability of these reordering schemes to better utilize the
computational power available in the micro-architecture, as well as their potential to provide
performance improvements. A characterization methodology is also proposed in order to tackle
load balancing issues that may arise in multi-threaded execution scenarios, which allows for
further improvements in the model’s insightfulness. Finally, a novel roofline-based evaluation
methodology is adopted in order to assess the variation in performance, power consumption and
energy efficiency for a range of kernel’s AIs when scaling the operating frequency of the CPU
cores.

2.1.1 sparse-aware carm for performance

To validate the proposed sparse-aware CARM, we conducted an extensive experimental cam-
paign on a Linux CentOS 7.5.1804 platform, with an eight-core Intel i7-7820X processor running
at the fixed frequency of 3.60GHz with 32KB of L1 Data cache, 1MB of L2 cache, 11MB of L3

cache and 32GB of DRAM running at 2133MHz, with prefetching and hyper-threading deacti-
vated. The proposed sparse-aware CARMs for this execution platform are presented in Figures 1

and 2, which are obtained for Sparse Matrix Vector Multiplication (SpMV) computation where
the vector elements fit in the L1 cache and for single- and multi-threaded (8 cores) execution
scenarios, respectively. For this evaluation, an open-source SpMV kernel, in x86 assembly, was
specifically developed (as documented in Deliverable 4.2), which attains performance close to the
corresponding Intel MKL kernel, while facilitating the algorithm analysis.
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Figure 2 Multi-Threaded SP Sparse CARM

As it can be observed in Figures 1 and 2, compared to the dashed original CARM roofs
achieved with scalar and single-precision instructions, used in the tested x86 assembly SpMV

1Timothy A Davis and Yifan Hu. “The University of Florida sparse matrix collection”. ACM Transactions on
Mathematical Software (TOMS) 38.1 (2011), pp. 1–25.

2Haoran Zhao et al. “Exploring Better Speculation and Data Locality in Sparse Matrix-Vector Multiplication on
Intel Xeon”. 2020 IEEE 38th International Conference on Computer Design (ICCD). IEEE. 2020, pp. 601–609.

3Ümit V Çatalyürek and Cevdet Aykanat. “Patoh (partitioning tool for hypergraphs)”. Encyclopedia of parallel
computing. Springer, 2011, pp. 1479–1487.
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Figure 3 AI Variation according to NNZ per row in Single Threaded Execution.

kernel, the proposed sparse-aware CARM achieves a lower L1 performance. This reduction in
the maximum attainable performance for the L1 cache is mainly due to indirect accesses to the
vector elements and memory accesses to multiple arrays. The dependencies between all those
transfers lead to performance degradation when data is being retrieved from the L1 cache. When
considering the proposed L2 rooflines, the performance is higher than the CARM roofs given
that the locality of the vector elements is preserved at the L1 cache (while in the original roofs,
streaming tests would have locality only in L2 cache). L3 roofline is slightly higher than the
CARM, however the diminished difference in performance entails that the higher latency in
accessing the vector with column indexes, with locality in L3, lowers the possible performance
benefits of having the vector elements continually stored in the L1 cache, due to the dependencies
related to indirectly accessing the former. New DRAM rooflines also show little differences in
performance, further justifying this performance impact.

The vertically dotted lines shown in Figures 1 and 2 represent the theoretical AI range of the
x86 Assembly SpMV kernel (see Deliverable 4.2). This range can be experimentally verified by
relying on dense synthetic matrices with different dimensions. Figure 3 presents this experimental
evaluation, where highlighted in grey is the AI range attainable using the x86 assembly SpMV
kernel in single precision (βi = 4). As it can be observed, the minimum AI corresponds to
the dense matrices with 1 column (AI = 0.125). As the number of non-zero elements per row
increases, the AI shifts to the right, approaching and stabilizing at values close to the theoretical
maximum, as it can be observed for matrices with more than 8704 columns (AI ≈ 0.16666).

2.1.2 analysis and usability of sparse-aware carm

The CARM derives its insight on attainable performance from the representation of the applica-
tions relative to the rooflines of the model, thus facilitating the optimization process. However,
the sparse-aware CARM and corresponding rooflines are created based on different principles,
given that sparse computation and corresponding performance not only depends on the utilized
kernel but also on the sparse matrix to compute upon, thus providing different insights from the
original model. As the attained rooflines are not only architecture-based but also related to the
used kernel, i.e. using bandwidth values retrieved from micro-benchmarking (as documented
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in Deliverable 4.2), the adapted model is now a representation of how the computation upon
a specific sparse matrix is able to utilize the performance capabilities of the micro-architecture,
bound by the characteristics and inefficiencies of the sparse algorithm utilized. There is also an-
other difference concerning the attainable performance and its association with the warm-cache
nature of the performed testing. The rooflines were built from micro-benchmarking bandwidth
values obtained using dense matrices stored in Compressed Sparse Row (CSR) for warm-cache
SpMV computation, where all involved data structures are stored in the respective memory level,
while the vector elements fit in the L1 cache. Given that all accesses to matrix data are performed
in a sequential and cohesive manner and that total data involved in the computation is always
the same, the optimization path is restricted to matrix reordering, where row and column per-
mutation vectors are applied to the matrix in order to optimize the accesses to the vector. This
means that, for a warm-cache scenario, a sparse matrix, whose SpMV involved data structures
only fit inside a specific cache level, cannot exceed the performance of the corresponding memory
roofline, as optimization through reordering only affects the accesses to the vector elements.

(a) CARM representation of a SpMV kernel applied to a sparse
matrix and perceived attainable performance.

(b) Sparse CARM representation of different matrices computed
upon and perceived attainable performance.

Figure 4 Comparison between the two CARM representations in a sparse computation scenario.

Figure 4 graphically represents the attainable performance portrayed by the original CARM
approach and the sparse-aware CARM approach. An example of a SpMV kernel computing upon
a matrix is presented as grey dots in both models, and the red lines represent the attainable perfor-
mance through optimization, where the original model portrays an misleading representation of
the application. This is due not only to the rooflines not being built considering limitations of the
sparse computation, but also the represented attainable performance by applying recommended
optimization strategies for memory bound kernels is unlikely to maximize the applications’ use
of the computational power of the micro-architecture. Comparatively, profilling using the Sparse
CARM portrays a realistic scenario regarding maximum performance in each memory level, with
the kernel limitations properly considered, and attainable performance is limited by the memory
level where the total size of the involved data structures are located.

2.1.3 sparse carm analysis: reordering algorithms and load balancing

Given that the results presented in Deliverable 1.2 have shown the potential to achieve perfor-
mance gains with Intel MKL SpMV by reordering the input sparse matrices, we extend herein
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this performance evaluation by considering the x86 assembly SpMV code. For this purpose,
we focus on using real sparse matrices, representing them in the Sparse CARM, and applying
state-of-the-art reordering algorithms, in single and multi-threaded execution. The considered
reordering algorithms are RCM,4 AMD,5 ND,6 the reordering algorithms included in the Patoh
partition library:7 cutnet and connectivity applied to two matrices, and a reordering algorithm
created based on the work proposed by Zhao et. al,8 named GrayRO. A set of eleven matrices
from Suite Sparse9 are considered for evaluation, as presented in Table 1. This set of matrices
are real, general and non-complex, and have a diverse number of rows, columns and non-zero
elements, covering a wide range of execution scenarios.

Matrix Name Rows Cols NNZ Size (KBytes)
Freescale1 3428755 3428755 17052626 ≈ 173400

patents 3774768 3774768 14970767 ≈ 161190

torso1 116158 116158 8516500 ≈ 67900

Stanford 281903 281903 2312497 ≈ 21370

ns3Da 20414 20414 1679599 ≈ 13360

poisson3Db 85623 85623 2374949 ≈ 19560

sme3Db 29067 29067 2081063 ≈ 16600

mixtank new 29957 29957 1990919 ≈ 15900

ss 1652780 1652780 34753577 ≈ 290880

Fullchip 2987012 2987012 26621983 ≈ 242990

wb-edu 9845725 9845725 57156537 ≈ 561920

Table 1 Real matrices retrieved from SuiteSparse.

Figure 5a presents the characterization of the matrices with different reordering algorithms in
the Sparse CARM for single-threaded execution. As it can be observed, the considered reordering
methods do not guarantee performance improvements for all matrices. In fact, several reordered
matrices suffer from performance reduction (e.g. Fullchip RCM and Freescale RCM), while other
have small gains in performance. For example, Freescale1 attained a speedup of 1.05x with ND,
while RCM provided 1.21x speedup for Stanford.

When taking into consideration the insight provided by the proposed modelling approach,
the maximum performance (in warm-cache conditions) that the SpMV kernel can achieve when
computing upon a specific sparse matrix is the roofline located directly above its representation.
This means that matrices Fullchip and SS which are represented on top of the DRAM roofline
(as are some of their reordered counterparts), have already highly optimized accesses to the
vector elements, meaning that any further optimization is likely to yield small performance gains,
and it might even result in the performance degradation, as can seen by the Fullchip RCM case.
However, matrices represented below this point are able to benefit from the improved locality

4Wai-Hung Liu and Andrew H. Sherman. “Comparative Analysis of the Cuthill–McKee and the Reverse
Cuthill–McKee Ordering Algorithms for Sparse Matrices”. SIAM Journal on Numerical Analysis 13.2 (1976), pp. 198–213.
doi: 10.1137/0713020.

5Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. “An Approximate Minimum Degree Ordering Algorithm”.
SIAM Journal on Matrix Analysis and Applications 17.4 (1996), pp. 886–905. doi: 10.1137/S0895479894278952.

6Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. “Generalized Nested Dissection”. SIAM Journal on
Numerical Analysis 16.2 (1979), pp. 346–358. doi: 10.1137/0716027.

7Çatalyürek and Aykanat, “Patoh (partitioning tool for hypergraphs)”.
8Zhao et al., “Exploring Better Speculation and Data Locality in Sparse Matrix-Vector Multiplication on Intel Xeon”.
9Davis and Hu, “The University of Florida sparse matrix collection”.

SparCity 7

https://doi.org/10.1137/0713020
https://doi.org/10.1137/S0895479894278952
https://doi.org/10.1137/0716027


2 × 10 1 3 × 10 1

Arithmetic Intensity [Flops/Byte]

100

Pe
rfo

rm
an

ce
 [G

Fl
op

s/
s]

L1 Roofline
L2 Roofline
L3 Roofline
DRAM Roofline
Freescale1 
Freescale1 RCM
Freescale1 GrayRO
Freescale1 ND
Freescale1 AMD
patents 
patents GrayRO
patents ND
patents AMD
torso1 
torso1 RCM
torso1 GrayRO
torso1 ND
torso1 AMD
torso1_cutnet PATOH
torso1_connect PATOH
Stanford 
Stanford RCM
Stanford GrayRO
Stanford ND
Stanford AMD
ns3Da 
ns3Da RCM
ns3Da GrayRO
ns3Da ND
ns3Da AMD

poisson3Db 
poisson3Db RCM
poisson3Db GrayRO
poisson3Db ND
poisson3Db AMD
poisson3Db_cutnet PATOH
poisson3Db_connect PATOH
sme3Db 
sme3Db RCM
sme3Db GrayRO
sme3Db ND
sme3Db AMD
mixtank_new 
mixtank_new RCM
mixtank_new GrayRO
mixtank_new ND
mixtank_new AMD
ss 
ss RCM
ss GrayRO
ss ND
ss AMD
FullChip 
FullChip RCM
FullChip ND
FullChip AMD
wb-edu 
wb-edu RCM
wb-edu ND
wb-edu AMD

(a) Single-threaded execution.

1.4 × 10 1 1.6 × 10 1 1.8 × 10 1 2 × 10 1 2.2 × 10 1 2.4 × 10 12.6 × 10 12.8 × 10 1

Arithmetic Intensity [Flops/Byte]

100

101

Pe
rfo

rm
an

ce
 [G

Fl
op

s/
s]

L1 Roofline
L2 Roofline
L3 Roofline
DRAM Roofline
Freescale1 
Freescale1 RCM
Freescale1 GrayRO
Freescale1 ND
Freescale1 AMD
patents 
patents GrayRO
patents ND
patents AMD
torso1 
torso1 RCM
torso1 GrayRO
torso1 ND
torso1 AMD
torso1_cutnet PATOH
torso1_connect PATOH
Stanford 
Stanford RCM
Stanford GrayRO
Stanford ND
Stanford AMD
ns3Da 
ns3Da RCM
ns3Da GrayRO
ns3Da ND
ns3Da AMD

poisson3Db 
poisson3Db RCM
poisson3Db GrayRO
poisson3Db ND
poisson3Db AMD
poisson3Db_cutnet PATOH
poisson3Db_connect PATOH
sme3Db 
sme3Db RCM
sme3Db GrayRO
sme3Db ND
sme3Db AMD
mixtank_new 
mixtank_new RCM
mixtank_new GrayRO
mixtank_new ND
mixtank_new AMD
ss 
ss RCM
ss GrayRO
ss ND
ss AMD
FullChip 
FullChip RCM
FullChip ND
FullChip AMD
wb-edu 
wb-edu RCM
wb-edu ND
wb-edu AMD

(b) Multi-threaded execution.

Figure 5 Real and Reordered Matrices represented in Sparse-CARM.

of the memory accesses to the vector elements, meaning that their performance can further be
improved towards their respective roofline.

The same matrices and reordering algorithms were also tested in multi-threaded fashion (8
cores execution), with each thread being assigned a partition based on equal distribution of
the rows with shared access to the X and Y vector. The representation of these matrices in
the multi-threaded SpMV adapted CARM (see Figure 5b) show a similar trend to the single-
thread experiments, since the reordering algorithms can either provide speedups or slowdowns
depending on the matrix. However, some of these results are also highly dependent on load
balancing of the multi-threaded execution. Since the experiments tested in this work focused on
an even partition of the rows between threads, the number of non-zero elements computed by
each thread may differ, resulting in data imbalance, thus provoking the performance degradation,
as threads with less workload will idle at the end of their execution.

Figure 6 Average Core utilization for each used matrix in Multi-threaded execution.

By observing the average core utilization of each matrix and reordered versions, presented
in Figure 6, it is possible to observe that reordering algorithms may result in an increase of the
load balancing (all 8 cores are being utilized), while in others may provoke serious imbalance
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issues. For example, matrix Poisson3Db has an increase of the average core utilization from 3.5
to 6.4 when using RCM as a reordering algorithm. On the other hand, Torso1 has a reduction
from 5.32 to 1.46 in the core utilization when using the same RCM algorithm. This explains
their characterization in the Sparse CARM, since Poisson3Db has a speedup of 1.54x and Torso1

a slowdown of 0.26x. However, the performance impact of load balancing affects the insight
provided by the Sparse CARM, as the variation of the representation of the matrices is no longer
uniquely associated to an improvement in accessing the vector elements. To tackle this issue, the
sparse-aware CARM analysis is extended in order to consider different core utilizations when
targeting multi-thread execution.
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Figure 7 Matrices and reordered versions represented with Sparse CARM rooflines according to their average
core utilization.

As can be seen in Figure 7, when the previously tested matrices are profiled in models that
consider their average core utilization, it is possible to characterize the performance variations
due to changes in locality of accesses to the vector elements, without the impact of load balancing.
For example, the computation upon Freescale1, with an average core utilization of 6.2, and the
AMD reordered version, with an improved load balancing reaching close to an average core
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utilization of 8, when analysed using the VTune Top-down method, showcased no changes,
indicating similar locality when accessing the vector elements, which was not fully corroborated
by the 8 core sparse-aware CARM. However, when characterizing these matrices in sparse-aware
models that consider their core utilization (Figure 7a), it is possible to verify that both Freescale1

and Freescale1 AMD are placed in the same relative position regarding the DRAM roof. This
shows that there was no change in the main execution bottlenecks after reordering, which fully
corroborates the findings of the Top-Down analysis.

Similar behaviour occurs for Stanford and Stanford ND, where VTune analysis indicates an
improvement in the locality of the accesses to the vector elements, and comparing the represen-
tation of each kernel in Figure 7b relative to their rooflines, the reordered version is represented
closer to the L3 roofline, which corroborates the previous statement. For a scenario where the re-
ordering lowers the locality of the accesses to the vector elements, the analysis of the Mixtank new
and Mixtank new with RCM shows that the latter is placed at a lower relative position to their
corresponding roofline compared to the original one, as can be seen in Figure 7c. The torso1

locality improvements showcased by the VTune analysis are also clearly seen in Figure 7d by the
improved relative representation of the reordered matrix to its respective roofline.

Figures 8, 9, 10, 11, 12, 13, 14 and 15 showcase all tested matrices and reordered counter parts
represented on respective Sparse CARM models that correspond to their average core utilization.
As can be observed, profiling the matrices in this manner, improves on the insight obtained
from their representation related to the new rooflines. For example, observing the poisson3Db
matrices represented in Figure 9, we can derive that the RCM reordering improved the locality of
accesses to the vector elements when compared to the original matrix and the GrayRO reordered
version, knowing that their representation is now less correlated to load balancing issues. The
same analysis can be made between two reordered matrices, corresponding to different load
balance scenarios, such as Stanford in Figure 9 and Stanford ND in Figure 11, in which the latter
is positioned closer to its respective L3 roofline, showcasing a better scenario in terms of locality
of accesses to the vector elements.

Figure 8 Matrices with average core utiliza-
tion ≈ 8 profiled in 8 Thread SpMV CARM.

Figure 9 Matrices with average core utiliza-
tion ≈ 7 profiled in 7 Thread SpMV CARM.

Based on these results, in order to profile the use of the available computational power when
executing the SpMV computation upon matrices in multi-threaded fashion while also excluding
the load balancing issue, each case should be profiled according to their respective average core
utilization, so as to isolate the cache locality as the major performance impediment and assess
whether further optimization on the matrix structure through reordering is necessary or even
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Figure 10 Matrices with average core utiliza-
tion ≈ 6 profiled in 6 Thread SpMV CARM.

Figure 11 Matrices with average core utiliza-
tion ≈ 5 profiled in 5 Thread SpMV CARM.

Figure 12 Matrices with average core utiliza-
tion ≈ 4 profiled in 4 Thread SpMV CARM.

Figure 13 Matrices with average core utiliza-
tion ≈ 3 profiled in 3 Thread SpMV CARM.

Figure 14 Matrices with average core utiliza-
tion ≈ 2 profiled in 2 Thread SpMV CARM.

Figure 15 Matrices with average core utiliza-
tion ≈ 1 profiled in 1 Thread SpMV CARM.

worth the pre-processing considering the maximum attainable performance.
With this, the multi-threaded performance model offers additional insights on where the
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optimization process should focus. For example, if a specific matrix is represented on top of a
memory roof that corresponds to its average core utilization, the next optimization step should
focus on improving the load balancing if the average core utilization is less than the total number
of cores (maximum core utilization). If the application has good core utilization but is below
the roof right above its representation, then reordering techniques can be applied to improve
the accesses to the vector elements. Finally, in the case of a kernel that is represented below
the memory roof in a model that does not correspond to its maximum core utilization, further
optimization can be focused on both the accesses of the vector elements and load balancing.

2.1.4 energy efficiency analysis and optimization

Focusing on power consumption and energy-efficiency of sparse computation, we also provide
herein a roofline-based analysis according to the benchmarking methodology presented in Deliv-
erable 4.2. With this aim, an evaluation of the variation of performance, power consumption and
energy-efficiency according to the AI of the kernel, i.e., the Number of Non-Zeros (NNZ) per row
of the input matrices, is performed.
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Figure 16 Performance variation according to
Core Frequency when all data fits inside L1 cache.
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Figure 17 Performance variation according to
Core Frequency when all data fits inside L2 cache.
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Figure 18 Performance variation according to
Core Frequency when all data fits inside L3 cache.
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Figure 19 Performance variation according to
Core Frequency when all data fits inside DRAM.

In order to explore possible optimization options to improve the energy efficiency for SpMV
computation, the micro-benchmarking procedure proposed in Deliverable 4.2 was executed with
lower core frequencies, exercising the possible AI ranges of the x86 assembly kernel. Figures 16,
17, 18 and 19 showcase how the performance is negatively affected by lowering the core frequency.
For the cache levels closest to the core, such as L1 and L2, the decrease in performance is
proportional to the frequency decrease, since these memory levels operate at the same speed as
the core. For example, the performance loss measured between the maximum performance tests
using 3.6GHz and 1.5GHz (a 58.2% decrease), was 58.6% (from 33.42 to 13.85 GFlop/s) and 58.5%
(from 28.10 to 11.65 GFlop/s) for L1 and L2 respectively. For the L3 and DRAM focused testing,
the relative performance decrease is lower than the one obtained for the private caches, due to the
separate frequency domains at which both these memories work. For example, the performance
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loss measured between maximums from testing performed in each of the memory levels, when
lowering the frequency from 3.6GHz to 1.5GHz (58.23% frequency drop), was 48% (from 10.96 to
5.7 GFlop/s) and 17.1% (from 2.68 to 2.22 GFlop/s) for L3 and DRAM respectively.

Regarding the effects of frequency scaling to the power consumption, it is possible to observe
in Figures 20, 21, 22 and 23, that differently from performance, the decrease in power consumption
is lower than the ratio between frequencies. For example, the maximum power loss when lowering
the frequency from 3.6GHz to 1.5GHz is 29.7%, 30.2%, 35.5% and 55.9% for L1, L2, L3 and DRAM
focused tests respectively. Moreover, it is possible to verify that for lower frequencies, the power
consumption of the Dynamic Random Access Memory (DRAM) focused tests is higher than the
ones obtained for the remaining memory levels, as the former averages 36.8 W and for example,
the L1 test averages 29.49 W, which is likely correlated to the fixed frequency at which the external
memory works. In this scenario the power consumption in the package domain gets dominated
by the active components in the memory controller instead of the other memory levels which are
working at a very low frequency.
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Figure 20 Power variation according to Core Fre-
quency when all data fits inside L1 cache.
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Figure 21 Power variation according to Core Fre-
quency when all data fits inside L2 cache.
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Figure 22 Power variation according to Core Fre-
quency when all data fits inside L3 cache.
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Figure 23 Power variation according to Core Fre-
quency when all data fits inside DRAM.

Figures 24, 25, 26 and 27 showcase the variation of energy efficiency according to the AI when
tested with different core clock speeds. As it can be observed, it is possible to attain better energy
efficiency when lowering the frequency, due to higher reduction in power consumption than the
one that occurs in performance. In particular for L1 and L2 caches (Figures 24 and 25), there is
an increase in the maximum efficiency of 35.2% and 32.3% respectively when lowering the core
frequency from 3.6 GHz to 2.4GHz. However, when further reducing the frequency from 2.4GHz
to 1.5GHz, there is a slight decrease in the efficiency, showcasing that for the L1 and L2 caches,
the minimum frequency is not coupled with the maximum efficiency. On the other hand, L3

and DRAM tests (shown in Figures 26 and 27), indicate that reducing the core frequency always
leads to improved energy efficiency. For example, when decreasing the frequency from 3.6GHz
to 1.5GHz, the energy-efficiency increases 46% and 32.4% respectively. However for lower AI
values, tests fitting inside L3 show diminished returns in lowering the clock speed until 1.5GHz
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as testing using 2.4GHz returns the highest efficiency values in this range.
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Figure 24 Energy Efficiency variation according
to Core Frequency when all data fits in L1 cache.
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Figure 25 Energy Efficiency variation according
to Core Frequency when all data fits in L2.
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Figure 26 Energy Efficiency variation according
to Core Frequency when all data fits in L3.
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Figure 27 Energy Efficiency variation according
to Core Frequency when all data fits in DRAM.

In order to verify the applicability of this roofline-based analysis to the optimization of power
consumption and energy efficiency, some of the previously tested real matrices were evaluated by
considering the performance, power consumption and energy-efficiency curves with varying core
frequencies. To simplify the analysis, the selected matrices have almost perfect load balancing,
with core utilization being close to the maximum cores used. Nevertheless, this analysis can be
easily applied to imbalanced matrices by extending the micro-benchmarking methodology from
Deliverable 4.2 to different number of threads. Figures 28, 29 and 30 present the analysis of
performance, power and energy efficiency respectively, of Freescale1 AMD, ss RCM and ns3Da
RCM for different core frequencies, by relying on the curves obtained for the memory levels
which limit their performance.

The performance and power variation (seen in Figures 28 and 29) in the computation of the
matrices presents a very similar behaviour regarding the relative loss compared to the previous
tests throughout the AI range of the kernel. As can be seen, the performance drop is less noticeable
for the matrices limited by the DRAM compared to the other matrix which was able to be stored
inside the L3 cache, due to the DRAM frequency remaining unchanged. Likewise, analysing the
power variation, all tested matrices reach similar values in the same AI of the curves.

When observing the energy efficiency variation (presented in Figure 30), for all of the tested
matrices, lowering the core frequency increases energy efficiency. Furthermore, the matrices that
are focused on DRAM, Freescale1 AMD and ss RCM, are placed very close to the perceived
best cases for energy efficiency for any of the tested frequencies, meaning that improving their
efficiency was only attained by lowering the clock speed of the core.

The portrayed scenario indicates that in situations where optimizing for energy efficiency
is more important than improving performance, lowering the core clock frequency is a simple
method to further increase the efficiency of the SpMV computation. Looking back at the multi-
threaded testing performed in real matrices, the Freescale1 and AMD reordered version (as seen
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Figure 28 Variation in Performance of SpMV applied to real matrices when changing core frequency.
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Figure 29 Variation in Power consumption of SpMV applied to real matrices when changing core frequency.
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Figure 30 Variation in Energy Efficiency of SpMV applied to real matrices when changing core frequency.
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in Figure 7a) showcase a scenario where the memory accesses to the vector elements are already
highly optimized, given their relative position to the corresponding roofline, providing a perfect
scenario where lowering the clock speed of the processor, with little change in overall execution
time, can increase the energy efficiency of the computation.

2.2 roofline-based hardware scaling for efficient sparse

computing

The demand for efficient computing systems has seen a recent increase with the end of Dennard’s
scaling and Moore’s law. In response to this challenge, the RISC-V instruction set architecture
(ISA) has emerged as a promising solution. RISC-V is based on Reduced Instruction Set Com-
puting (RISC) principles, which have gained significant popularity in both small battery powered
systems and high-performance computing. Its open-source nature and lack of licensing require-
ments have also led to its rapid growth in adoption, both in the academic and commercial spaces.
Performance analysis and modelling tools are crucial for an emerging architecture such as RISC-V,
as it enables software to better leverage architectural resources, and aids in designing efficient
hardware that meets application demands.

To this end, a hand-optimized SpMV implementation in RISC-V assembly is presented, which
is then used to do performance analysis on a simulated RISC-V architecture. The cache dynamics
of SpMV execution are explored, identifying ways the hardware may be scaled to improve
performance. Through the use of the Cache-Aware Roofline Model, the algorithm’s range of
arithmetic intensities is analyzed, aiding in the hardware design process through the identification
of application demands and bottlenecks.

2.2.1 spmv implementation

The proposed SpMV implementation operates on Compressed Sparse Row (CSR) format matrices,
with the matrix and vector being composed of 64-bit floating-point values, while the row offset and
column index arrays use 32-bit integers. The optimized implementation relies on the unrolling
of the inner loop that iterates through the elements in one row, with an unrolling factor of 8.
When iterating through the elements in each row, the number of remaining non-zero values is
determined, and used to calculate a target jump address. If 8 or more values remain, the execution
jumps to the start of the unrolled section. If there are fewer than 8 values remaining, the program
jumps within the unrolled portion so that as many elements as remaining are processed.

2.2.2 architecture and methodology

The aforementioned implementation was tested using gem5,10 a computer architecture simulator
with a number of parameterizable CPU models. The Minor CPU, an in-order model with a
four-stage pipeline is used, initially parameterized with a 32kB L1 cache with 4 ways, and a 128kB
L2 cache, both with 64 byte lines, running at 2GHz.

2.2.3 exploring cache dynamics

In order to explore the performance impact the caches have on the execution, two synthetic sparse
matrices were generated, referred to as the best- and worst-cases. Both matrices are of size (D,D)
where D is the number of 8 byte elements that the L1 cache plus an extra line can contain, in this
case 4104. The matrices are given this size so that the vector does not entirely fit in the L1 cache,
which allows dynamics such that the reuse of the vector’s data and cache eviction to be explored.

10Jason Lowe-Power et al. “The gem5 Simulator: Version 20.0+”. en. arXiv:2007.03152 [cs] (2020). arXiv: 2007.03152.
url: http://arxiv.org/abs/2007.03152 (visited on 12/28/2021).
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The worst-case matrix aims to make no reuse of the vector data stored in the L1 cache, evicting
previously cached data with every access. Since the L1 cache is 4-way associative, 5 accesses to
distinct addresses mapping to the same cache line must be made in order to evict the vector’s
previously cached data. As the 32kB L1 cache has 8kB per set, and we are indexing a vector of
64-bit or 8 byte elements, the column indexes of each row are generated at an increment of 1024,
leading to 5 accesses mapping to the same cache address per row. In other words, each row of the
spare matrix contains 5 non-zero elements, spaced 1024 columns apart. This causes the desired
eviction on every access of the vector, ensuring it is not stored in the L1 cache.

The best-case matrix has the opposite goal, which is maximizing the reuse of cached data.
In order to better establish a direct comparison, the number of accesses per row is maintained
constant, i.e., the number of non-zero elements per row is still 5. However, the column indexes of
these non-zero elements instead allow for contiguous access to the elements of the vector. Since
each 64 byte cache line can contain 8 elements of the vector, each read always accesses the same
cache line, which should be cached in L1 after the very first element is read. This way there is
maximal data reuse, given the accessed vector elements are always in the L1 cache after the first
read.

The two matrices are processed, with their properties and performance results shown in
Table 2. As expected, the best-case matrix significantly outperforms the worst-case matrix in
performance, despite the two differing exclusively in the column indexes. This highlights the
cache’s impact on performance, even when it is impossible to cache the entire set of data.

Worst-case Best-case
Dimensions (4104, 4104) (4104, 4104)

NNZ 20520 20520

FLOP 45144 45144

Bytes 459652 459652

Performance (GFLOP/S) 0.072 0.119

Table 2 Properties and performance of the best- and worst-case matrices

In order to mitigate the issues with cache eviction seen in the worst-case scenario, the ar-
chitecture is reparametrized with two approaches, altering the L1 cache’s dimensions and its
associativity. Both matrices are processed in the new architecture, with the results presented in
Table 3. As illustrated by the results, both modifications of the cache achieve the same result,
fully mitigating the decrease in performance seen in the worst-case matrix, as cache eviction is
prevented and the vector is stored in the L1 cache for both cases.

Size = 48kB Associativity = 8

Worst-case performance
(GFLOP/S) 0.119 0.119

Best-case performance
(GFLOP/S) 0.119 0.118

Table 3 Performance of the best- and worst-case matrices following changes to the L1 cache

While both changes result in nearly the same performance, it should be noted that they would
differ significantly in resource usage when implemented. Depending on the power and area
budgets of the design, a designer might prefer the increase in associativity for its much more
modest resource usage. It is also of note that the synthetic nature of the two matrices may lead to
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the results not translating fully to real data – if accesses to the vector are not sufficiently sparse,
an increase in associativity may not be sufficient to fully mitigate cache evictions, in which case
an increase of the cache size may be necessary for optimal performance.

2.2.4 exploring the range of arithmetic intensities

By analysing the presented SpMV implementation, it is possible to determine the number of
floating-point operations performed and bytes transferred during execution from the characteris-
tics of the matrix. With these, it is possible to calculate the arithmetic intensity of the workload
as follows:

AI =
FLOPs

bytes
=

R+ 2 · nnz
4 + 20 · nnz + 12R

, (1)

where R represents the number of rows and nnz the number of non-zero values of the matrix.
By manipulating and simplifying the expression, we can determine the arithmetic intensity
exclusively as the ratio between non-zero values and rows, such that:

AI =
2

nnz
R + 1

4

R + 20
nnz
R + 12

≈
2

nnz
R + 1

20
nnz
R + 12

, when R >> 1. (2)

By defining the limits of the aforementioned ratio, we can determine the range of arithmetic
intensities achievable. For the sake of applicability, the minimum ratio is limited to 1, thus the
matrices with empty rows are excluded from this analysis. Since there is no upper limit to the
ratio of non-zeros and rows, it can be concluded that the range of arithmetic intensities covered
by the adopted SpMV kernel is

[
3

32
, 1

10

[
. It is possible to create a matrix exhibiting any arithmetic

intensity within this range by selecting the ratio between the number of rows and the number of
non-zero values.

In this vein, two sets of matrices of varying arithmetic intensities and sizes are created,
following the same principles as the previously presented best-case matrix. Table 4 shows the
characteristics of each set of matrices, the “L1 set” and “L2 set”, named after the cache level they
target.

L1 set L2 set
Target Size (kB) 24 64

NNZ 1228 3276

Columns 614 1638

Table 4 Characteristics of the two sets of matrices

As all matrices in each set share the same number of non-zero values and columns, the change
in the nnz

R ratio (which governs the arithmetic intensity) is achieved by varying the number of
rows. The non-zero values are evenly distributed among the rows for optimal uniformity, with
matrices that have fewer rows becoming more dense.

The system is first benchmarked in order to build its Cache-Aware Roofline Model, after
which the sets of matrices are processed. Each matrix is processed twice in order to level the
cache data and obtain steady-state performance figures (closer to the CARM’s rooflines), which
are measured during the second execution. Figure 31 shows the architecture’s CARM, along with
the performance of both sets plotted on it.

The results of both sets show an increase in performance as the arithmetic intensity increases,
consistent with what is expected due to the memory-bound nature of the range in study. The set
targeting the L1 cache is capable of delivering a higher performance than the one targeting the L2
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(a) Full view of the system’s CARM (b) The CARM plot zoomed in on the relevant arithmetic
intensity range, annotated with each set’s maximum per-
formance

Figure 31 Performance of the two matrix sets plotted on the system’s CARM

cache, as expected due to the higher L1 bandwidth, and resulting higher roofline. However, it is
clear both performance curves are positioned significantly below their theoretical maximums, i.e.,
their respective rooflines. One of the reasons for this behaviour lies in the in-order nature of the
processor, which execution paradigm differs from CARM’s assumption that memory and floating-
point operations execute in parallel. Additionally, the algorithm is significantly more complex
than the synthetic benchmarks used to measure the memory bandwidth and peak performance
with which the CARM is built, with other dynamics at play such as frequent conditional branching
and data dependency. Despite the results not fully correlating with the model, the CARM can
still be used to expeditely determine the performance upper limits of the arithmetic intensity
range being operated in.

2.2.5 improving spmv efficiency with roofline-based architecture

scaling

In this part of the study, we focus on exploring the possibility of improving the SpMV efficiency
by following the hardware utilization insights given by the CARM. In a nutshell, we aim at scaling
the capability of different hardware resources in order to meet the demands of the application.
While in the analysis of cache dynamics the goal was the improvement of performance through
the reparameterization of the cache, the objective now is to scale down the architecture to reduce
the hardware’s footprint, while maintaining a similar performance level.

As Figure 31a shows, the SpMV kernel is positioned deeply in the memory-bound region, and
the attainable AIs range is very limited (see transparent shaded region), meaning this kernel will
never be able to exploit the compute upper-bounds of this architecture (see the distance from the
horizontal roof). Given these observations, the peak (compute) performance can be significantly
reduced while the current performance (limited by memory bandwidth) can be kept, scaling the
architecture to closely meet the application requirements. In this study, this scaling is achieved by
replacing the floating-point unit with a non-pipelined implementation, where the unit’s latency
and its effect on performance is explored.

With the insights provided by the CARM, it is possible to determine the latency that minimizes
the peak performance, while not reducing the attainable performance at a desired arithmetic
intensity. Equation 3 describes the attainable performance according to the CARM, where B is
the bandwidth of the memory level in study, I is the arithmetic intensity, and Fp is the peak
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performance.

Fa(I) = min{B · I, Fp} (3)

By setting a goal of preserving the performance across all memory levels at the upper limit of
the arithmetic intensity range, we consider the memory level with the highest bandwidth, the L1

cache. Given that the range in study is memory-bound, the attainable performance is governed
by the equation’s left term, and we may calculate as (4):

Fa(
1

10

) = BL1→C · 1

10

= 0.532 GFLOP/s (4)

We may then determine the maximum latency that results in a peak performance above this result
(4) using Equation 5, where Fpo denotes the system’s original peak performance of 4 GFLOP/s:

Latency = ceil(
Fpo

Fa(
1

10
)
) = 7 cycles (5)

Two more latency values are tested in order to better study this parameter’s impact on
performance, these being 5 and 13 cycles. The former was chosen to provide a higher peak
performance, while the latter was obtained by performing the process shown in Equations 4 and
5 for the L2 cache’s bandwidth. The resultant rooflines, along with the original one, and the
SpMV performance of the original system are presented in Figure 32.

(a) Full view of the CARM resulting from each of the la-
tencies, annotated with the respective peak performance

(b) The CARM plot zoomed in on the relevant arithmetic
intensity range, annotated with each set’s maximum per-
formance

Figure 32 Comparison between the rooflines of the 4 parameterizations and the SpMV on the original system

As predicted, the ridge points of the 7-cycle system’s L1 roofline and of the 13-cycle system’s
L2 roofline are immediately to the right of arithmetic intensity range’s upper limit, preserving the
respective performance upper-bounds. The compute-bound roof of the 13-cycle system is lower
than the observed SpMV performance on the original system, and as such a drop in performance
is expected. The SpMV performance is then measured on each of the systems, with the results
shown below, beginning with the 7-cycle system in Figure 33.

As demonstrated by the results, despite the significant reduction to the system’s peak perfor-
mance, from 4 GFLOP/s to approximately 0.571 GFLOP/s, the performance of SpMV remains
virtually unchanged. By determining the ratio between the achieved performance and the peak
performance, we can evaluate if efficient usage of the hardware’s resources is being made. In the
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(a) Full view of the system’s CARM (b) The CARM plot zoomed in on the relevant arithmetic
intensity range, annotated with each set’s maximum per-
formance

Figure 33 Performance of the two matrix sets plotted on the system’s CARM after the floating-point unit’s
reparameterization to a 7-cycle latency

case of the L1 set, while in the original system the execution reaches 8.3% of the peak performance,
the reparameterization increases it to 57.3%, bringing the architecture’s capabilities much closer
to the requirements.

The 5-cycle system is then tested, with the outcome presented in Figure 34. This results in a
higher peak performance when compared to the 7-cycle reparameterization, at 0.8 GFLOP/s, and
similarly it does not affect the SpMV performance. However, this also leads to a less efficient use
of resources, with the ratio between achieved and peak performance sitting at 40.9%.

(a) Full view of the system’s CARM (b) The CARM plot zoomed in on the relevant arithmetic
intensity range, annotated with each set’s maximum per-
formance

Figure 34 Performance of the two matrix sets plotted on the system’s CARM after the floating-point unit’s
reparameterization to a 5-cycle latency

Lastly, the 13-cycle system is evaluated, with the results shown in Figure 35. The system
now attains a peak-performance of 0.308 GFLOP/s, which is lower than the originally achieved
performance of the L1 set. Consequently, this leads to a reduction in this set’s performance by ap-
proximately 17.2%, as it is no longer able to benefit from the the L1 cache’s high bandwidth. With
the sharp reduction in peak-performance, the execution becomes bottlenecked by the floating-
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point unit, bringing it closer to the L2 set. Despite the L2 set originally performing below the L2

roofline, a slight reduction in performance of 3.9% is also observed. This demonstrates some level
of reuse of L1 data in this set, despite the performance in the original system staying below the L2

roofline. As explained previously, elements of the vector may be cached in L1 even if the entirety
of the dataset does not fit in it, leading some sections of the algorithm benefiting from a higher
memory bandwidth, and achieving higher performance due to their memory-bound nature. By
reducing the peak performance, those sections instead become compute-bound.

(a) Full view of the system’s CARM (b) The CARM plot zoomed in on the relevant arithmetic
intensity range, annotated with each set’s maximum per-
formance

Figure 35 Performance of the two matrix sets plotted on the system’s CARM after the floating-point unit’s
reparameterization to a 13-cycle latency

While experimental results are not available, we can speculate about the power consumption
of the new floating-point unit, comparing the original system with the first reparameterization,
which has lowest-performing, presumably most efficient floating-point unit that does not harm
SpMV performance. Seeing as the unit is no longer pipelined and has a 7-cycle latency, its input
frequency is reduced by a factor of 7. This reduction is likely to provide a significant increase in
energy efficiency due to the strong correlation between a digital circuit’s power consumption and
its frequency.

Other approaches to reduce the peak performance are available, such as providing the caches
and the core with different clocks, and reducing the clock frequency of the latter, which would
likely lead to a significant decrease in power consumption in the whole core. It should be noted
that this may have a more pronounced negative impact on performance in this particular case,
given that the execution is not exclusively limited by the memory system, and the reduction in
processor frequency may exacerbate the slowdowns caused by branching and data dependency.

2.2.6 conclusion

Overall, the results demonstrate the pronounced impact the processor’s cache has on performance,
particularly due to the memory-bound nature of the workload, which is evidenced with the aid of
the CARM. Through an analysis of the algorithm’s arithmetic intensity range, insights provided
by the CARM allowed for an informed redesign of the architecture, leading to more power
efficient execution. This study demonstrates the key role a performance modeling tool such as the
CARM can play in hardware design, allowing the architecture to be tailored to the requirements
of any workload, and improving the overall efficiency.
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3 exploring the processing limits of spmm and ttm

on cpu/gpu systems

3.1 analysis of sparse matrix multiplication on a gpu device

SpMM kernels, which perform matrix multiplication between a sparse matrix and a dense matrix,
are widely used in High Performance Computing (HPC) scientific and engineering applications.
The processing of sparse matrices provides advantages such as requiring less storage space and
the fact that computations can in some cases be performed significantly faster than with their
dense counterparts. This is, respectively, the result of not storing (any or all of) the zero elements
and only needing to compute with the non-zero elements of the sparse input matrix.

Modern accelerator devices such as Graphics Processing Units (GPUs), which are widely used
as accelerators for both dense and sparse matrix multiplication kernels, provide Dynamic Voltage
and Frequency Scaling (DVFS) capabilities to comply with power constraints and increase energy
efficiency. Depending on the application load, different frequencies can be selected on-the-fly for
the accelerator compute and memory components. These can be set independently to exploit
workload characteristics. Particularly important is the amount of computations in relation to
global memory loads/stores. For some compute-bound workloads it might be preferable in
terms of power and energy efficiency to lower memory clocks while keeping core clocks high. In
contrast, for memory-bound workloads, one might lower core clocks with no significant effect on
performance.

In some cases, the use of SpMM kernels can exercise the available compute and memory
resources differently than GEMM kernels. While the latter is typically compute-bound, and as
a result often used as a benchmark to show peak performance of parallel accelerator devices,
operations involving sparse matrices can be memory-bound to varying degrees. As a result,
given an hardware platform or device, the optimal core and memory frequencies can depend
on the representation format or algorithm used, on the particular inputs, i.e. matrix dimensions,
sparsity/density levels (number of zeros to non-zeros, or vice-versa), and on the numerical
precision used and hardware support for native efficient operation at the used precision.

We evaluate the potential of tuning the core and memory frequencies of an Ampere GPU
accelerator device for optimizing the execution of SpMM (and GEMM). Cross-comparing between
the use of different methods for multiplying sparse matrices, we analyse the effect of GPU core
and memory frequencies on the achieved throughput, average power and energy efficiency (and
resulting energy consumption), taking into account inputs with different sparsity/density levels,
the use of different matrix representation formats, and the use of 32-bit (float) or 16-bit (half)
floating-point precision for data representation.

3.1.1 targeted device, reported metrics and execution variables

Targeted device. All experiments have been performed on an Intel Core-i7 system with an
NVIDIA RTX 3080 Ampere (10GB / GA102-200-KD-A1 variant) GPU accelerator. The targeted
GPU has 64 Streaming Multiprocessors (SMs) 8704 CUDA cores (128 per SM) and 272 tensor
cores (4 per SM). The GPU has a base core frequency of 1440 MHz and a boost core frequency
of 1710 MHz. In the Ampere architecture, each CUDA core is capable of performing a native
32-bit (or 16-bit) fused-multiply add operation per clock cycle (1:1 FP16 to FP32 ratio). Thus,
on the targeted GPU, the peak floating-point throughput on CUDA cores (calculated at boost
frequency) is 29.77 TFLOP/s (= 8704 × 1710 × 2). On the Ampere GA102 GPU microarchitecture,
each tensor core performs 64 fused multiply-add 16-bit floating-point operations with 32-bit
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accumulation, totaling in a throughput of 59.54 TFLOP/s (= 64 × 272 × 1710 × 2) considering
the use of the whole device. Global memory is of the GDDR6X type and can go up 1188MHz
(19 Gbit/s effective speed), reported as 9501MHz in the NVIDIA System Management Interface
(nvidia-smi) command line utility, due to this type of memory sending 8 bits of data per clock
cycle (quad data rate and PAM4 signaling). The bandwidth to global memory is 760.3 GB/s. All
experiments have been performed relying on CUDA 12.0 and GPU Driver version 525.85.12.

Reported Metrics. We report the achieved throughput in Tera FLoating-point Operations Per
Second (TFLOP/s) and the average power consumption in Watts (W). Throughput is calculated
based on the execution time of the given matrix multiplication run and on the actual number
of performed floating-point operations. Time measurements are performed relying on the abso-
lute elapsed wall-clock time for executing matrix multiplication on the GPU, being obtained on
the host with clock gettime(CLOCK MONOTONIC, &time). Power measurements are performed
relying on the NVIDIA Management Library (NVML), an API for monitoring and managing
NVIDIA GPUs. Energy efficiency, which is calculated from the previous metrics, is reported
in Giga FLoating-point Operations Per Joule (GFLOP/J). Notice that the cost of populating the
input matrices, converting to/from matrix formats, or any other host code preceding/following
the execution of matrix multiplication routines on the GPU are not taken into account in the
performance, power and energy efficiency metrics. There is a minimum warm-up period of 5

seconds before any measurement is performed, which is accomplished by running the matrix
multiplication kernel under study as many times as needed. Multiple executions are also per-
formed during the measurement phase to increase the precision of the reported metrics. After the
warm-up period, on the measuring phase, the kernel is again executed for a minimum time of 5

seconds, being the execution time for a single kernel execution estimated by dividing the elapsed
time by the amount of kernel executions.

Execution Variables. We use the cuBLAS11 and cuSPARSE12 libraries for performing matrix
multiplication targeting CUDA cores and (dense) tensor cores. These are the defacto libraries
for GEMM and SpMM (and related) computations on NVIDIA GPUs. The versions used are
those included in the CUDA software stack, being the default versions of the algorithms of
each of these libraries the ones for for the experiments. Native hardware-accelerated SpMM is
performed relying on CUTLASS13 (version 2.11), which is a set of CUDA C++ abstractions for
implementing matrix-multiplication and related computations. CUTLASS supports the Sparse
Matrix Multiply-Accumulate (MMA) Ampere tensor cores, which cuBLAS and cuSPARSE do not.

To evaluate the impact frequency scaling, we performed runs with different GPU core and
memory frequencies, set through the nvidia-smi tool before execution of a CUDA program
performing matrix multiplication. For the GPU core we alternatively use a frequency of 345MHz,
690MHz, 1020MHz, 1365MHz or 1710MHz, which are the closest supported frequencies to 20%,
40%, 60%, 80% or 100% of the vendor-announced boost frequency. Memory is set alternatively to
810MHz, 5001MHz, 9251MHz or 9501MHz, the four highest frequencies supported by the driver.

As the starting point for all experiments, we rely on dense representations for representing
both input matrices. For SpMM runs, the first matrix input is converted to a sparse representation
at runtime. In the experiments using cuSPARSE to perform SpMM, we consider the Coordinate
(COO), Compressed Sparse Column (CSC), CSR and Blocked-Ellpack (Blocked-ELL) formats,

11NVIDIA Corporation. cuBLAS. version 12.0. 2023. url: https://developer.nvidia.com/cublas.
12NVIDIA Corporation. cuSPARSE. version 12.0. 2023. url: https://developer.nvidia.com/cusparse.
13Andrew Kerr et al. CUTLASS. version 2.11.0. 2022. url: https://github.com/NVIDIA/cutlass.
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which are the formats supported for representing sparse matrices in this library. The experimental
campaign considers the following different sparsity levels: ∼ 50.00%, ∼ 75.00%, ∼ 87.50%, ∼ 93.75%,
∼ 96.88%, ∼ 98.44%, ∼ 99.22%, ∼ 99.61%, ∼ 99.81%, ∼ 99.90%.

In the experiments using the CUTLASS library for sparse tensor-core accelerated SpMM, we
use specially built matrices complying with the 2:4 fine-grained sparsity format. This format
represents the first input matrix (the sparse matrix) as two smaller matrices — a compressed
matrix (half the values of the dense representation) and a matrix with 2-bit indices, indicating
the positions of the matrix elements in the dense matrix to be multiplied with those on the
compressed matrix. To use the 2:4 fine-grained sparsity format, there must exist at least two zeros
in each set of four contiguous values in any given matrix row (row-major representation). Notice
that the use of this format is a strict requirement to enable using the sparse tensor cores.

The matrices are represented relying on the use of the 16-bit IEEE-754 floating-point (half) or
the 32-bit IEEE-754 floating-point (float) numerical formats. Using cuBLAS, we evaluate the use of
uniform-precision GEMM operation (on CUDA cores) and that of mixed-precision GEMM using
16-bit inputs with 32-bit accumulation (on CUDA cores and on Tensor cores). On cuSPARSE
SpMM, we evaluate the use of the COO, CSR and CSR formats using uniform 32-bit precision.
When using the (dense) tensor cores on cuSPARSE SpMM, which relies on the Blocked-ELL
format, 16/32 mixed-precision is used. Finally, when using CUTLASS to make use of the sparse
tensor cores, we also rely on mixed-precision with 16-bit inputs and 32-bit accumulation. Notice
that direct operation with 32-bit data is not supported in tensor cores (either dense or sparse).
When using 16-bit precision inputs we always rely on 32-bit accumulation (i.e. mixed precision),
since that is most representative of real use cases. As a matter of fact, cuSPARSE does not support
uniform 16-bit precision SpMM for the COO, CSC, CSR formats.

3.1.2 gemm on cuda cores and on tensor cores

Fig. 36 depicts the throughput, power and energy efficiency achieved with different pairings of
core and memory frequencies, for GEMM runs (M,N,K set to 8192 or 16384) using the cuBLAS
library. Fig. 36(a) and Fig. 36(b) show these metrics for the use of 16-bit and 32-bit precision inputs
on CUDA cores. The same metrics are showcased in Fig. 36(c) for the use of 16-bit precision
inputs on tensor cores.

The achieved results indicated that close to the full potential of the cuBLAS GEMM kernels is
being achieved, with no significant difference in the throughput achieved (TOPS/s) for processing
matrices with 8192 × 8192 or 16384 × 16384 elements. Execution relying on cuBLAS uniform-
precision 32-bit GEMM on CUDA cores achieved up to 23.368 TFLOP/s, which represents 78.50%
of the vendor-announced throughput (29.77). Mixed-precision cuBLAS GEMM on CUDA cores
resulted in worse throughput, achieving only 17.44 TFLOP/s. This can be attributed to the
execution of more instructions, since mixed-precision is not natively supported in CUDA cores.

Higher throughput on CUDA cores (29.49 TFLOP/s, 99.07% of peak) has been achieved with
uniform-precision 16-bit operation, i.e. 16-bit inputs and 16-bit accumulation (not represented
in the charts). However, since this is not safe to use for many applications and not supported
in several libraries (e.g. not supported in COO, CSC and CSR on cuSPARSE), uniform-precision
16-bit operation has not been included as part of the main experimental campaign.

Operation using tensor cores allowed to achieve a significantly higher throughput (up to
58.96), which represents 99.03% of the peak (59.54) at the used precision, i.e. 16-bit inputs with
32-bit accumulation. This is to expect, since tensor cores are hardware units especially designed
for performing matrix multiplication operations at high throughput.

The reported average power consumption is comparable between uniform precision and
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(a) Uniform-precision 32-bit GEMM on
CUDA cores.
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(b) Mixed-precision 16/32-bit GEMM on
CUDA cores.
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(c) Mixed-precision 16/32-bit on tensor
cores.

Figure 36 Throughput, power and energy efficiency for cuBLAS GEMM with different GPU core (1: 345MHz,
2: 690MHz, 3: 1020MHz, 3: 1365MHz or 5: 1710MHz) and memory (810MHz, 5001MHz, 9251MHz or
9501MHz) frequencies, with input matrices of size 8192 × 8192 or 16384 × 16384 elements.

mixed-precision matrix multiplication on CUDA cores, 258.10W or 245.10W for processing
16384 × 16384 matrices at the highest clock/memory frequencies. However, the use of tensor
cores, for the same core/memory frequencies, results in a much lower power consumption
(165.88) than if relying on CUDA cores for the GEMM computations. This can be attributed to
the specialization of these special-purpose acceleration units for the task at hand, since tensor
cores are built for the sole purpose of multiplying matrices.

As expected, throughput is at its highest when pairing the highest GPU core and memory
frequencies considered. However, depending on the metric(s) one wants to optimize, there are
benefits in using lower GPU core and/or memory frequencies. The fact that, overall, throughput
is significantly affected when using lower core frequencies (and not lower memory frequencies)
can be attributed to the compute-bound nature of GEMM computations.

Core frequency variation resulted in a more significant impact on power consumption than
memory frequency variation. Lowering the core frequency results in a drop in voltage, resulting
in a drop in power consumption. This is especially the case when dropping from 1710MHz to
1365MHz, as the higher is the frequency a chip is operating at, the less efficient it becomes.

Dialing back the memory frequency can be useful for the resulting power consumption
reduction; especially because it could often be performed with a negligible impact on performance.
As a matter of fact, using a memory frequency of 5001MHz (52.64% of the maximum) is enough
to sustain close to peak performance for all considered core core frequencies. Memory frequency
only has a very noticeable impact on throughput when set to its lowest considered value (810MHz).
This is to expect since at such point GEMM operations become memory bound.

Notice that these trends can be observed for all three considered execution modes. While
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power consumption using a memory frequency of 9251MHz or 9501MHz is similar, for processing
16384 × 16384 matrices, an absolute reduction in power consumption of 12.73W up to 24.54W,
16.79W up to 20.30W, and 5.95W up to 17.66W has been registered when using a memory
frequency of 5001MHz (compared to the maximum, i.e. 9501MHz). For GEMM on tensor cores,
highest energy efficiency is achieved by setting memory frequency to 5001MHz. Execution on
CUDA cores benefited from the use of an even lower memory frequency (810MHz) allowed to
further improve energy efficiency. For the same matrix sizes, combining with tuning of the core
frequencies resulted in an energy efficiency of up to 124.13 (1365MHz) for uniform-precision
GEMM on CUDA cores, 90.84 (1020MHz) for mixed-precision GEMM on CUDA cores and 404.31

(1365MHz) for mixed-precision GEMM on tensor cores.

3.1.3 spmm on cuda cores

Fig. 37(a), Fig. 37(b) and Fig. 37(c) depict the throughput achieved with different core and memory
frequencies, for cuSPARSE SpMM (M,N,K set to 16384) runs using the COO, CSC or COO matrix
formats, respectively, and considering different sparsity levels. Notice that for the calculation
of the throughput metric only the floating-point calculations effectively performed to multiply
elements from the two input matrices have been considered.
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(a) Throughput using the COO sparse matrix format.
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(b) Throughput using the CSC sparse matrix format.
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(c) Throughput using the CSR sparse matrix format.

Figure 37 Throughput of cuSPARSE cuSpMM on CUDA cores with different GPU core (1: 345MHz,
2: 690MHz, 3: 1020MHz, 4: 1365MHz or 5: 1710MHz) and memory (810MHz, 5001MHz, 9251MHz or
9501MHz) frequencies, with input matrices of 16384 × 16384 elements.
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The throughput of SpMM in terms of TFLOP/s, up to 0.387 (COO), 0.103 (CSC) or 0.397 (CSR),
is orders of magnitude lower than that of GEMM. This can be attributed to multiple factors. Data
locality is lost in regard to fetching data from the second matrix (the dense input matrix), which
does not allow SpMM to apply the same optimizations that are typically applied for GEMM
kernels. Notice that skipping more computations means that in total less data is used form the
dense matrix, making reuse of the data obtained through memory loads pertaining to that matrix
less likely to occur. Moreover, in relation to GEMM, there are additional memory accesses to the
column and/or row indices/pointers that are integral part of the sparse formats. Notice, however,
that less TFLOP/s being achieved is not necessarily indicative of higher execution time. This is
expected to be the case for high sparsity matrices, where the amount of NNZs is much smaller
than the amount of elements in the correspondent dense representation of the same matrix.

SpMM runs with the COO or CSR formats are impacted in a similar manner in regard to
the sparsity of the input matrices. For any given core and memory frequency setting, increasing
sparsity results in a decrease in the achieved throughput. Matrices with higher sparsity have less
non-zero elements, making SpMM work more on the memory latency, and as a result exercise less
the available compute resources. SpMM using CSC displays a different behaviour, denoting less
efficient operation. Nevertheless, throughput on all representations converges for high sparsity
inputs, achieving 0.115 (COO), 0.101 (CSC) and 0.113 (CSR) TFLOP/s for ∼ 99.90 sparsity. Further
increasing sparsity (i.e. processing matrices with less NNZs) after a certain point (around ∼ 99.22

sparsity) does not have a very pronounced effect on the achieved throughput.
Overall, as is the case with GEMM, using higher core and memory frequencies tends to

increase the throughput of SpMM. And, similarly to GEMM, memory clocks can be reduced
down to 5001MHz without a very significant impact on throughput. However, in contrast with
GEMM, for some sparsity levels (especially between ∼ 96.88% and ∼ 99.61%), when setting the
memory frequency to 810MHz, SpMM is still able to achieve a throughput close to that of using
the highest core and memory frequencies.

It is worthwhile to to notice that if using COO or CSR with the memory set to operate at
810MHz, the throughput of SpMM for low sparsity inputs (especially ∼ 50%) is significantly
impacted by core frequency settings. However, if using the CSC matrix format, sparse matrices
with ∼ 50% up to ∼ 98.44% zeros can be processed with a similar throughput as that of using the
highest memory frequency, even if using the highest core frequency. This is indicative that CSC is
still working at the throughput, even when pairing such low memory frequency with high core
frequencies, while COO and CSR work at the memory latency under the same conditions.

Fig. 38(a), Fig. 38(b) and Fig. 38(c) depict the average power consumption achieved with
different core and memory frequencies, for cuSPARSE SpMM (M,N,K set to 16384) runs using
the COO, CSC or COO matrix formats, respectively, and considering different sparsity levels.

In consonance with the throughput metric, the use of the COO or CSR formats resulted in a
different behaviour in regard to average power consumption than if using the COO format. Notice
that the only difference between COO and CSR is that in the case of the later the row indices are
represented using the CSR format. The CSC formats differs from those two formats (COO and
CSR) due to it being column-major and the column indices using the CSC representation, which
can have an impact on the efficiency of an SpMM implementation. As a matter of fact, a given
matrix represented as COO has the same layout in memory as the transpose in CSR.

Overall, for COO and CSR, power consumption drops when increasing sparsity, indicating
that SpMM is working at memory latency and in agreement to the fact that high sparsity resulted
in fewer TFLOP/s having been achieved. For CSC, power consumption increases, indicating that
SpMM is using more GPU resources when operating high sparsity matrices. The only exception is
when GPU memory frequency is set to its lowest considered value (810MHz) in combination with
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(a) Average power consumption using the COO sparse matrix format.

0
40
80

120
160
200
240
280
320

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

810MHz 5001MHz 9251MHz 9501MHz

A
ve

ra
ge

 P
o

w
er

 (
W

) 50.00 75.00 87.50 93.75 96.88 98.44 99.22 99.61 99.81 99.90

(b) Average power consumption using the CSC sparse matrix format.
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(c) Average power consumption using the CSR sparse matrix format.

Figure 38 Average power consumption of cuSPARSE cuSpMM on CUDA cores with different GPU core
(1: 345MHz, 2: 690MHz, 3: 1020MHz, 4: 1365MHz or 5: 1710MHz) and memory (810MHz, 5001MHz,
9251MHz or 9501MHz) frequencies, with input matrices of 16384 × 16384 elements.

high GPU core frequencies, e.g. GPU core set to 1710MHz. In such scenario, SpMM operations
seems to be limited by memory latency for the use of any of these sparse matrix formats.

Fig. 39(a), Fig. 39(b) and Fig. 39(c) show the energy efficiency achieved with different core
and memory frequencies, for cuSPARSE SpMM (M,N,K set to 16384) runs using the COO, CSC
or COO formats, respectively, taking into consideration different sparsity levels.

The COO and CSR formats placed higher than COO in terms of energy efficiency. The
energy efficiency of SpMM using COO/CSR matrix formats decreased significantly with increases
in sparsity. However, SpMM using COO or CSR formats to process high sparsity inputs still
converges to higher energy efficiency (0.657 and 0.682 GFLOP/J, respectively) than CSC (0.633).
In contrast, the efficiency of SpMM with CSC, is not as affected by the sparsity of the input
sparse matrix. Notice that for COO the achieved throughput (see Fig. 37) varies in close to linear
proportion to power consumption (see Fig. 38), while this is not the case for COO and CSR. For
these two formats, performance drops much faster than power consumption with increases in
sparsity. Hence the registered decrease in energy efficiency for high sparsity.
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(a) Energy efficiency using the COO sparse matrix format.
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(b) Energy efficiency using the CSC sparse matrix format.
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(c) Energy efficiency using the CSR sparse matrix format.

Figure 39 Energy efficiency of cuSPARSE cuSpMM using the COO, CSC and CSR matrix formats with
different GPU core (1: 345MHz, 2: 690MHz, 3: 1020MHz, 4: 1365MHz or 5: 1710MHz) and memory
(810MHz, 5001MHz, 9251MHz or 9501MHz) frequencies, with input matrices of 16384 × 16384 elements.

3.1.4 spmm on tensor cores

The use of (dense) tensor cores is supported by the cuSPARSE library through the use of the
Blocked-Ell format. Given a block size B, a compacted matrix represents only the blocks of B×B

elements from the original matrix that do not have any non-zero element. In addition, an auxiliary
matrix stores, for each row of blocks, the column indices of the blocks form the original matrix
that are represented in the compacted matrix. This auxiliary matrix, which has M× c positions,
where c is the maximum number of blocks with non-zero elements in the original matrix on any
given row, is used to decide which data to load from the dense matrix.

Multiple factors need to be taken into account to maximize the matrix multiplication perfor-
mance using this matrix format, which are influenced by the particular sparse matrices to process.
In order to fully exercise the tensor cores, one must use a sufficiently large block size. However,
compared to smaller block sizes, the downside is it becomes more difficult to find in the original
input matrix blocks that only have zeros. Notice that the existence of these blocks is what allows
a significant portion of floating-point operations related to matrix multiplication to be skipped.

Fig. 40 depicts the throughput achieved with different pairings of core and memory frequen-
cies, for cuSPARSE SpMM (M,N,K set to 16384) runs using the Blocked-ELL format, considering
the use of different block sizes (8, 16 or 32) and different sparsity levels. Notice that only the
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operations performed to multiply elements from the sparse input and dense input have been
considered for the calculation of this metric. Thus, this metric is directly proportional to the ratio
of blocks represented in the column index matrix of the Blocked-Ell representation format.
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(a) Throughput using a block size of 8.
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(b) Throughput using a block size of 16.
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(c) Throughput using a block size of 32.

Figure 40 Throughput using the Blocked-ELL sparse matrix format, setting the block size to 8, 16 or 32, with
different pairings of GPU core (1: 345MHz, 2: 690MHz, 3: 1020MHz, 4: 1365MHz or 5: 1710MHz) and
memory (810MHz, 5001MHz, 9251MHz or 9501MHz) frequencies, with matrices of 16384 × 16384 elements.

Overall, the use of the Blocked-Ell format achieves a higher throughput when using the
largest considered block size. Using a block size of 32 allowed to achieve a throughput of up
to 51.18 TFLOP/s, representing 85.96% of the peak throughput of the GPU with tensor cores
(59.54%). Relying on a block size of 8 (16), only up to 13.86 (27.74) TFLOP/s have been achieved.

In order to extract the maximum matrix multiplication performance (i.e. the lowest execution
time), one might have to use a block size resulting in less throughput (which only considers
the computations being actually performed). For all block sizes considered (8, 16 or 32), when
processing an input sparse matrix with ∼ 50% sparsity, all blocks from the original matrix are
represented in the Blocked-Ell compacted matrix. As a result, no operations are skipped in
comparison to using GEMM. However, for the two highest levels of sparsity, ∼ 99.81% and ∼ 99.90,
11.78% and 6.08% of the blocks get to be used for computations if using a block size of 8. If
using a block size of 32 (16), for the same sparsity levels, 86.58% (39.44%) and 63.43% (22.22%) of
the blocks are mapped to computations. In particular, the use of a block size of 16 represents a
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suitable trade-off between throughput and the percentage of blocks with NNZs, as it still results
in avoiding a significant amount of operations.

Another interesting thing to extract form the obtained experimental results is that, for any
given block size, the achieved throughput when using 810MHz for the memory frequency is
being capped at around the same level, for all core frequencies. While the achieved throughput
scales very well with core frequency if using a memory frequency of 5001MHz or above, it stays
more or less constant if using 810MHz as the memory clock. This behaviour is consistent with
that of GEMM running on tensor cores.
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(a) Average power consumption using a block size of 8.
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(b) Average power consumption using a block size of 16.

0
40
80

120
160
200
240
280
320

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

810MHz 5001MHz 9251MHz 9501MHz

A
ve

ra
ge

 P
o

w
er

 (
W

)

50.00 75.00 87.50 93.75 96.88 98.44 99.22 99.61 99.81 99.90

(c) Average power consumption using a block size of 32.

Figure 41 Average power consumption achieved using the Blocked-ELL matrix format, setting the block size
to 8, 16 or 32, with different pairings of GPU core (1: 345MHz, 2: 690MHz, 3: 1020MHz, 4: 1365MHz
or 5: 1710MHz) and memory (810MHz, 5001MHz, 9251MHz or 9501MHz) frequencies for runs using
cuSPARSE cuSpMM, with input matrices of 16384 × 16384 elements.

Overall, the average power consumption is lower for runs with high sparsity inputs. This can
be attributed to less data reuse when the ratio of blocks represented in the compressed matrix
to the total of blocks in the original matrix is low, making the kernel more memory bound. This
results in less efficient of the compute resources, hence the registered drop in power consumption.

Fig. 42 depicts the energy efficiency achieved relying on different core and memory frequen-
cies, for cuSPARSE SpMM (M,N,K set to 16384) using the Blocked-Ell format, considering the use
of different block sizes (8, 16 or 32) and sparsity levels.
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(a) Energy efficiency using a block size of 8.
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(b) Energy efficiency using a block size of 16.
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(c) Energy efficiency using a block size of 32.

Figure 42 Energy efficiency with Blocked-ELL, using a block size equal to 8, 16 or 32, with different GPU
core (1: 345MHz, 2: 690MHz, 3: 1020MHz, 4: 1365MHz or 5: 1710MHz) and memory (810MHz, 5001MHz,
9251MHz or 9501MHz) frequencies for SpMM runs with input matrices of 16384 × 16384 elements.

The combination of core and memory frequencies most conducive to high energy-efficiency
depends on the block size used. For all sparsities, if using a block size of 8 or 16, setting the core to
1365MHz and memory to 5001MHz results in highest energy-efficiency being achieved. However,
if using a block size of 32 to process the two highest sparsity levels considered (∼ 99.81% and
∼ 99.90%), setting the memory frequency to 9251MHz achieves higher energy efficiency (241.83

and 311.61) than if setting it to 5001MHz (225.57 and 282.26).
Overall, the most energy efficient Blocked-ELL runs have been achieved setting the block size

to 32. This is a direct consequence of how throughput and power consumption are affected by
the block size. A significantly higher throughput is achieved with a block size of 32 in relation to
using a block size of 16, and especially 8. Since the average power consumption does not differ
significantly when using different considered block sizes, this results in the block size achieving
higher throughput also resulting in more energy-efficient SpMM runs.

3.1.5 spmm on sparse tensor cores

In relation to Volta and Turing, which respectively have the first and second generation dedicated
matrix acceleration hardware, the tensor cores in the Ampere GPU architecture add the capability
of natively performing hardware accelerated SpMM. In order to use the sparse tensor cores on the
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Ampere GPU architecture, one is required to use of a specialized representation (2:4 sparse matrix
representation). In this representation at least two data values per each consecutive four data
values have to be 0. The sparse tensor cores are fed tiles of matrix values, that are half the size
in comparison to their representation in the original matrix and additional matrices identifying
(with 2-bit indices) which 2 particular elements (out of 4) are to be used for computations. As a
result, less multiply-add operations are actually performed in comparison to when performing
dense-dense matrix multiplication, allowing to achieve higher matrix multiplication performance.

As part of the selection of an efficient sparse tensor-core GPU kernel, we explored different
thread-block tiles, warp tiles and MMA operation tiles, as well as different alternative matrix
layout configurations. This exploration took into account the different limitations of sparse/dense
tensor cores. In comparison to a dense tensor core, a sparse tensor core operates on a larger tile
in regard to the K dimension. On CUTLASS SpMM, the combination of parameters resulting in
highest throughput includes the use of a thread-block tile with 128× 128× 64 (M,N,K), a warp tile
of 64 × 64 × 64 and an MMA operation tile of 16 × 8 × 32. In addition to tensor-core accelerated
SpMM, since CUTLASS also supports GEMM on tensor cores, we opted to also test it in order to
have an additional baseline. For the experiments with CUTLASS GEMM, the only modification
in relation to the parameterization used for tensor-accelerated SpMM resides in the tile shapes
used in the K dimension (half of that used for sparse tensor cores), making the number of MMA
operations per warp and per thread-blocks the same as for the CUTLASS SpMM runs.

Fig 43 depicts the throughput, average power consumption and energy efficiency of GEMM
using dense tensor core acceleration through cuBLAS and CUTLASS and that of SpMM using
sparse tensor core acceleration through CUTLASS. Sparse tensor cores are rated as having double
the peak throughput of dense tensor cores. However, as for the other formats and methods evalu-
ated as part of this study, we are counting only the operations performed, i.e. skipped operations
(half of those in relation to GEMM) are not counted for the calculation of the throughput metric.

GEMM on CUTLASS achieved similar throughput (58.96 TFLOP/s) to that of GEMM on
cuBLAS (59.32 TFLOP/s), i.e. close to the peak throughput of the GPU for the operating precision
used. The only exception is when one combines a high core frequency with a low memory
frequency. For example, if using CUTLASS GEMM, it can be observed that when using a memory
frequency of 5001MHz, there is no improvement in throughput from an increase in core frequency
from 1020MHz to 1710MHz. As a result, if using cuBLAS, higher throughput is achieved using
that memory frequency paired with core frequencies above 1020MHz.

SpMM on CUTLASS achieved a similar throughput to that of GEMM across a wide range
of core and memory frequencies. The exception is also for a 5001MHz memory frequency, for
which case using a core frequency above 1365MHz does not result in higher throughput. For this
particular case, SpMM operations using sparse tensor cores achieves a higher throughput than
that of GEMM operations on CUTLASS using dense tensor cores.

Overall, GEMM on CUTLASS resulted in significantly higher power consumption than on
cuBLAS, with SpMM on CUTLASS being even more demanding in that regard. This is especially
the case when high clock frequencies are paired with high memory frequencies, allowing the
hardware to be exercised to its potential. In the case of the SpMM, its extra power consumption
in regard to GEMM on the same library can be attributed to sparse tensor cores using additional
hardware to process the metadata matrix that is part of the 2:4 fine-grained sparsity format.

As a direct result of higher power consumption, dense tensor core acceleration on CUTLASS is
less energy-efficient than on cuBLAS. Highest energy efficiency has been achieved on GEMM, both
on cuBLAS (404.31 GFLOP/J) and CUTLASS (289.38 GFLOP/J), combining a memory frequency
of 5001MHz with a core frequency of 1365MHz. On the sole basis of throughput in terms of
amount of floating point operations processed per unit of time, SpMM on CUTLASS proved to be
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(a) Throughput.
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(b) Average power consumption.
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(c) Energy efficiency.

Figure 43 Throughput, average power consumption and energy efficiency of SpMM using sparse tensor cores
(CUTLASS) and that of GEMM using dense tensor cores (cuBLAS or CUTLASS), with different GPU core
(1: 345MHz, 2: 690MHz, 3: 1020MHz, 4: 1365MHz or 5: 1710MHz) and memory (810MHz, 5001MHz,
9251MHz or 9501MHz) frequencies, with input matrices of 16384 × 16384 elements.

even less efficient in regard to throughput, which is a direct result of higher power consumption
having been achieved. However, due to the skipped operations, processing a matrix that can be
represented in the 2:4 matrix format, is still faster in SpMM on CUTLASS than in GEMM on
CUTLASS (or cuBLAS), resulting in less energy use.

A significant challenge for using the sparse tensor cores is related to the requirements of the
first input matrix (the sparse matrix), i.e. the fact that the used sparse matrix format (2:4 fine-
grained sparsity) requires at least two data values per each consecutive four data values stored in
row-major memory layout to be zero. One way to address this could be to add dummy columns
(where needed) with only zeros. Using such an approach (possibly coupled with reordering in
order to minimize the amount of dummy values inserted), at most the input matrices, i.e. the
sparse input (before conversion to the 2:4 format) and the dense input, would need to be modified
(adding columns of zeros) until they are double in size in relation to the original inputs.

In order to demonstrate what happens in such scenario, multiple runs of an SpMM kernel
implemented using CUTLASS to make use of the sparse tensor cores were profiled, increasing
K (from M,N,K, the dimensions of the matrix multiplication operation) from 16384 up to 32768

(representing the worst case), with increments of 1024. Fig. 44 represents the speedup achieved
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with SpMM on CUTLASS, in relation to GEMM performed always with 16384 × 16384 matrices,
on either cuBLAS or CUTLASS.
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Figure 44 Speedup of SpMM accelerated with sparse tensor cores on CUTLASS in comparison to GEMM
accelerated with dense tensor cores on CUTLASS and on cuBLAS.

In comparison to processing matrices with 16384 × 16384 elements using the dense tensor
cores, the use of the sparse tensor cores still resulted in a speedup > 1 for increments in K up
to 31744, i.e. to close to double in comparison to the initial input matrices. This suggests that
it is worthwhile to explore methods to enable the use of sparse tensor cores for matrices that
otherwise can not be directly used due to not adhering to the 2:4 sparsity format requirements.

3.1.6 comparison between the evaluated spmm approaches

Depending on the inputs to process, different methods should be considered to maximize per-
formance and/or minimize energy consumption. For low sparsity matrices, the use of highly
efficient GEMM kernels (e.g. those on cuBLAS) can still be the preferable route. However, the
experimental results clearly show that it can payoff to explore the use of SpMM if there is enough
sparsity in at least one of the inputs of matrix multiplication. Individually tuning the core and
memory frequencies on a modern GPU device had a profound effect on energy-efficiency on
the different considered matrix multiplication methods. Thus, the achieved experimental re-
sults demonstrate that tailoring core/memory frequencies to the needs of each method it is a
requirement to minimize (maximize) energy consumption (efficiency).

Fig 45(a) and Fig 45(b) represent the speedups and energy consumption improvements
achieved for processing matrices with 16384 × 16384 elements, with the different SpMM methods
considered as part of this study — SpMM on cuSPARSE using the COO, CSC, CSR or Blocked-ELL
sparse matrix formats and SpMM on CUTLASS accelerated with sparse tensor cores relying on
the 2:4 fine-grained format. The reported speedups are calculated in relation to mixed-precision
GEMM on cuBLAS using the dense tensor cores, which proved to always be preferable in all
fronts (throughput, power and energy efficiency) both to GEMM relying on CUDA cores on
either considered precision (32-bit uniform or 16-bit/32-bit mixed-precision) and to GEMM rely-
ing dense tensor cores on CUTLASS. The energy consumption improvement metric is calculated
dividing the energy consumption of the SpMM methods by that resulting from executing GEMM.

Overall, SpMM runs using the COO CSC or CSR formats significant increase in performance
and energy efficiency (translating to energy consumption reductions) in relation to GEMM with
each halving of the density of the input sparse matrix. In fact, after ∼ 93.75% sparsity the
registered speedups in relation to GEMM on cuBLAS between matrices with consecutive levels of
sparsity is always above 1.61×. Considering the exploitation of the DVFS capabilities to maximize
the energy-efficiency of each of the matrix multiplication methods, after the same level of sparsity
SpMM using these sparse formats always improved efficiency by at least 1.62× with each sparsity
increase. This results from the fact that there are half the amount of floating-point computations
to be performed, since only those represented in the sparse matrix (i.e. the non-zero elements in
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(b) Energy consumption improvement ratio with the use of core and memory frequencies specialized to each method.

Figure 45 SpMM in comparison to cuBLAS GEMM, with input matrices of 16384 × 16384 elements,
considering different levels of sparsity. The matrix sparsities are the following: 1: ∼ 50.00%, 2: ∼ 75.00%,
3: ∼ 87.50%, 4: ∼ 93.75%, 5: ∼ 96.88%, 6: ∼ 98.44%, 7: ∼ 99.22%, 8: ∼ 99.61%, 9: ∼ 99.81%, 10: ∼ 99.90%.

the first matrix) are to be multiplied by values in the dense matrix.
Sparsity levels of ∼ 99.61% or above resulted in SpMM achieving speedups > 1 using any

of the sparse matrix formats that are processed using CUDA cores on cuSPARSE (COO, CSR or
CSC) in relation to execution of a cuBLAS GEMM using CUDA cores. To achieve performance
improvements with SpMM using these formats in relation to that of cuBLAS GEMM on tensor
cores, the sparsity of the sparse input matrix must be higher. To surpass the matrix multiplication
performance of cuBLAS GEMM on tensor cores, a sparsity of ∼ 99.61% or above is required,
having speedups up to 1.99× (using the COO format) been achieved when processing matrices
with ∼ 99.90% sparsity. Using the individually the core and memory frequency individually
found to maximize energy-efficiency for each of the matrix multiplication methods resulted in
energy consumption improving by a factor of 1.75× in relation to GEMM.

The use of (dense) tensor cores has been attained on cuSPARSE using the Blocked-ELL matrix
format. In order to achieve speedups > 1 in relation to cuBLAS using tensor cores, SpMM using
Blocked-Ell required the use of input matrices with sparsity of ∼ 99.81 or above. This has been
achieved using a block size of 16, which achieves a speedup of 1.58× over GEMM for processing
the highest sparsity input. When striving to minimize energy consumption, the use of a block size
of 16 resulted in energy consumption improving by a factor of 1.13× over GEMM. For matrices
with sparsity between ∼ 50% and ∼ 99.61%, the use of a block size of 32 resulted in higher matrix
multiplication performance and improved energy consumption.

Compared to using COO, CSC or CSR, which only use the CUDA cores of the Ampere
microarchitecture, the performance and energy-efficiency of Blocked-ELL format is significantly
higher for low sparsity matrices. This can be explained by the fact that the former are not very
efficient at processing matrices with a high percentage of NNZs and Blocked-ELL makes use of
tensor cores. However, for such sparsity levels, using GEMM on tensor cores still resulted in
faster execution, being the improvement in regard to energy consumption even more pronounced.

When processing low sparsity matrices using the Blocked-ELL format, it was not possible to
simultaneously achieve a significant reduction in the percentage of blocks with non-zero elements

SparCity 37



and the use of a block size large enough to be conducive to high throughput. This can be partially
attributed to the fact that the matrices used in the experiments have been generated with a random
uniform distribution. As a result, the NNZs are spread thought the whole matrix, making the
existence of clusters of NNZs rare, which results in fewer blocks free of NNZs, which are the
ones that are responsible for accelerating SpMM with the Block-ELL format.

SpMM on CUTLASS using sparse tensor cores allowed to achieve 1.96× higher performance
than GEMM on cuBLAS using (dense) tensor cores, which represents close to double the speedup
achieved with SpMM on cuSPARSE compared to the same baseline (1.06×). The achieved im-
provement in regard to energy consumption, while still significant, is not as high (1.35×) due to
the additional power consumption registered when using the sparse tensor cores. For ∼ 99.81

sparsity, the use of sparse tensor cores allowed to achieve higher performance and improved
energy consumption in relation to any other evaluated matrix multiplication method. However,
while still competitive in regard to performance in relation to SpMM on cuSPARSE at the highest
level of sparsity considered ( ∼ 99.90), the later is expected to far surpass sparse tensor core
accelerated SpMM on CUTLASS at processing matrices with higher levels of sparsity. This is due
to the fact that, independently of the level of sparsity, considering the use of the sparse tensor
cores results at best in skipping half of the floating point computations.

A particularity related to sparse tensor cores is that its direct application requires the sparsity
pattern of the sparse input to comply with a specialized format (2:4 fine-grained sparsity). As a
result, the kernel using sparse tensor cores was not able to process the input matrices with up to
99.22% sparsity that have been used across the different considered SpMM methods. Ongoing
work includes the exploration of efficient approaches to modify matrices with different levels of
sparsity and different sparsity patterns, so that SpMM can be accelerated with sparse tensor cores
for processing matrices that otherwise do not comply with the required format.

3.2 identifying the tensor-times-matrix upper-bounds on cpu

and gpu devices

A Tensor Contraction (TC)14 is an important tensor operation, which is analog to GEMM in the
multidimensional realm of tensors. Two tensors are multiplied across their matching modes
resulting in a tensor with the remaining modes. For example, a TC C = A · B with two fourth-
order tensors A ∈ RI0×I1×I2×I3 and B ∈ RI2×I3×I4×I5 , results in a tensor C ∈ RI0×I1×I4×I5 . I0 to
I3 are the dimensions of tensor A in modes zero to three, while I2 to I5 are the dimensions of
tensor B in modes zero to three.

There are a few TCs that are notable and are often even treated independently of regular
contractions. One of these is GEMM, which is a contraction between two second-order tensors.
Others are Tensor Times Vector (TTV), which is a contraction between a Kth-order tensor and a
first-order one, and TTM,15 which is a contraction between a Kth-order tensor and a second-order

14Thomas Herault et al. “Distributed-memory multi-GPU block-sparse tensor contraction for electronic structure”.
2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 2021, pp. 537–546. doi: 10.1109/

IPDPS49936.2021.00062; Jinsung Kim et al. “Optimizing Tensor Contractions in CCSD(T) for Efficient Execution
on GPUs”. Proceedings of the 2018 International Conference on Supercomputing. 2018, pp. 96–106. doi: 10.1145/

3205289.3205296; Jiawen Liu et al. “Athena: High-Performance Sparse Tensor Contraction Sequence on Heterogeneous
Memory”. Proceedings of the ACM International Conference on Supercomputing. 2021, pp. 190–202. doi: 10.1145/3447818.
3460355; Jiawen Liu et al. “Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous
Memory”. Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. 2021,
pp. 318–333. doi: 10.1145/3437801.3441581; Ryan Levy, Edgar Solomonik, and Bryan K. Clark. “Distributed-
Memory DMRG via Sparse and Dense Parallel Tensor Contractions”. CoRR abs/2007.05540 (2020).

15Jiajia Li et al. “Optimizing Sparse Tensor Times Matrix on Multi-core and Many-Core Architectures”. 2016 6th
Workshop on Irregular Applications: Architecture and Algorithms (IA3). 2016, pp. 26–33. doi: 10.1109/IA3.2016.010;
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one.
For TTV, all fibers of the Kth-order tensor are multiplied with the vector resulting in a tensor

of order K− 1. For TTM, all fibers are multiplied with each column of the matrix. Since a fiber is
a vector, this operation consists of several vector-matrix dot products, which generate new vectors
with length equal to the number of columns of the matrix. Therefore, the resulting fiber length
becomes equal to the number of columns in the matrix.

,

-

.

.

)

;  -

,

)

Figure 46 Example of a dense TTM with a third-order tensor

Figure 46 provides an example of a dense TTM with a third-order tensor. In the example, the
tensor has I× J fibers of length K. Each of these fibers multiplies with each of the F columns of
the matrix, resulting in a dense tensor with I× J fibers of length F. For sparse TTM the rationale
is similar to the one presented in Figure 46, however only the fibers with one or more nonzero
elements are computed. Also, the output of the operation is no longer a sparse tensor but instead
a semi-sparse tensor meaning that not all of the output tensor’s fibers are sparse. This happens
because all fibers that have at least one nonzero element after the dot product with a dense
column of the matrix generate a nonzero element for the output tensor. Since all columns of the
matrix are dense, all fibers that have at least one nonzero element generate a dense fiber for the
output tensor.16

There are several formats to store and perform computations over sparse tensors. One of the
most used for HPC applications is the Compressed Sparse Fiber (CSF)17 format. The general idea
is that it implements a tree like structure, where each mode is a level and paths from root to leaf
encode a nonzero coordinate.

Given the importance and the previously elaborated characteristics of TTM, the purpose of
this study is to derive a set of data-parallel approaches for sparse TTM and analyse their efficiency
in the state-of-the-art computing platforms, with CSF as the storage format for the tensor. The
analysis consists of measuring the AI and performance of the proposed TTM approaches by
relying on several data-sets, real and synthetic, on both the Central Processing Unit (CPU) and
GPU architectures. With this analysis and with resort to the CARM,18 it is expected to pinpoint
the potential execution bottlenecks and uncover the performance and utilization limits when

Yuchen Ma et al. “Optimizing Sparse Tensor Times Matrix on GPUs”. J. Parallel Distrib. Comput. 129.C (2019), pp. 99–
109. doi: 10.1016/j.jpdc.2018.07.018.

16Ma et al., “Optimizing Sparse Tensor Times Matrix on GPUs”.
17Shaden Smith and George Karypis. “Tensor-Matrix Products with a Compressed Sparse Tensor”. Proceedings of the

5th Workshop on Irregular Applications: Architectures and Algorithms. 2015. doi: 10.1145/2833179.2833183.
18Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. “Cache-aware Roofline model: Upgrading the loft”. IEEE

Computer Architecture Letters 13.1 (2013), pp. 21–24.
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performing TTM on different architectures.

3.2.1 data-parallel tensor-times-matrix (ttm) processing

The development of data-parallel TTMs approaches was done in Intel’s OneAPI DPC++, which
is one of the most widely used Khronos SYCL implementations. SYCL provides a unified model,
where developers program at a higher level than the native acceleration Application Program-
ming Interface (API), but always have access to lower-level code that allows users to target any
accelerator without having to change their source code. Besides its portability, when compared
with other API such as CUDA, SYCL has proven to provide comparable performance.19 There-
fore it can be considered a future standard in heterogeneous programming, thus selected for the
developments conducted in this work.

Due to their higher order, sparse tensors (even more than sparse matrices) are very prone to
variability both in their shape and non-zero element distribution. Therefore, creating one kernel
that is fully optimized for all scenarios is not a trivial task. As such, in order to minimize this
problem, two different versions of data-parallel TTM were created, tested and compared.

Kernel V1: Element-centric TTM approach For TTM with a sparse tensor stored in CSF format,
the first approach is to process the data in such a way that each thread computes one element of
the output. Therefore, each thread requires access to one fiber and to one column of the matrix.

1 // FbrCnt * ColCnt threads -> one for each element of the output

2 cl::sycl::range <2> globalSize(fbrCnt , colCnt);

3 cl::sycl::range <2> localSize (1, colCnt);

4 cl::sycl::nd_range <2> numItems(globalSize , localSize);

5

6 cl::sycl::event e {

7 q.submit ([&](cl::sycl:: handler &h) {

8 h.parallel_for(numItems , [=](cl::sycl::nd_item <2> item) {

9 const auto fbr { item.get_global_id (0) };

10 const auto col { item.get_local_id (1) };

11 auto tmp { 0.0f };

12

13 // Load fiber boundaries: accFbrPtr[fbr] and accFbrPtr[fbr +1]

14 for (auto ele { accFbrPtr[fbr] }; ele < accFbrPtr[fbr +1]; ++ele) {

15 // Load in -fiber index and value

16 const auto k { accKIdx[ele] - 1 };

17 const auto val { accValues[ele] };

18

19 // Load element of the column

20 // Compute product and accumulate

21 tmp += val * accMatrix[k * colCnt + col];

22 }

23

24 // Store fiber -column dot product to global memory

25 accOutput[fbr * colCnt + col] = tmp;

26 });

27 })

28 };

Listing 1: TTM Kernel v1

19Goutham Kalikrishna Reddy Kuncham, Rahul Vaidya, and Mahesh Barve. “Performance Study of GPU applica-
tions using SYCL and CUDA on Tesla V100 GPU”. 2021 IEEE High Performance Extreme Computing Conference (HPEC).
2021, pp. 1–7. doi: 10.1109/HPEC49654.2021.9622813.
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In kernel 1 (see Listing 1), threads are created in the same number as output elements (line 2)
with each of them computing the dot-product between their assigned fiber and column. Therefore,
each thread starts by loading its fiber boundaries (line 14) and then for all non-zero elements
in that fiber loads both their in-fiber index as well as their value (lines 16-17). Hence, from the
tensor, there are two loads for boundaries plus two more loads for each non-zero element in
the fiber. From the matrix, for each non-zero element in the fiber there is one more load, to
fetch the corresponding element in the column (line 21). As such, the total amount of loads
from memory can be expressed as 2 + 2×FbrLen+ FbrLen, where FbrLen denotes the number of
non-zero elements in the fiber. Since each thread computes the dot-product between a fiber and
a column, the number of operations performed is one multiply and one addition per non-zero
element in the fiber (line 21), i.e., the total amount of Floating-Point Operations (FLOPs) is equal
to 2×FbrLen. This operation generates one element of the output, which is subsequently stored in
the output fiber, thus contributing to the only one store operation performed (line 25). Assuming
all data types are 4-byte wide, the AI can be expressed as follows:

AIv1 =
1

4

× 2 × FbrLen

2 + 2 × FbrLen+ FbrLen+ 1

=
1

2

× FbrLen

3 + 3 × FbrLen
=

1

6

× FbrLen

FbrLen+ 1

(6)

According to the expression derived in Equation 6, the AI of each thread may be different
depending on the amount of non-zero elements in the fibers that are assigned to the thread for
processing. However, these AIs will always range between a minimum and a maximum value,
which can be calculated. The minimum AI can be achieved when the fiber has the least possible
number of non-zero elements, which is one. Thus, the minimum AI can be expressed as follows:

min(AIv1) = min

(
1

6

× FbrLen

FbrLen+ 1

)
=

1

6

× 1

2

=
1

12

(7)

The maximum AI, on the other hand, is achieved when the number of non-zero elements in
the fiber is large enough such that FbrLen

FbrLen+1
≈ 1. As such, the maximum AI can be expressed as:

max(AIv1) = max

(
1

6

× FbrLen

FbrLen+ 1

)
≈ 1

6

× 1 =
1

6

(8)

Kernel V2: Fiber-centric TTM approach Another approach to efficiently extract data-parallelism
in TTM processing is to assign each thread to compute an entire fiber of the output (instead of
a single element). In this approach, each thread still requires access to one fiber, but now it also
requires access to the whole matrix instead of just a column (as previously elaborated in Kernel 1

with element-centric TTM processing).
1 // FbrCnt threads -> one for each fiber of the output

2 cl::sycl::range <1> globalSize(fbrCnt);

3 cl::sycl::range <1> localSize(wgSize);

4 cl::sycl::nd_range <1> numItems(globalSize , localSize);

5

6 cl::sycl::event e {

7 q.submit ([&](cl::sycl:: handler &h) {

8 h.parallel_for(numItems , [=](cl::sycl::nd_item <1> item) {

9 const auto fbr { item.get_global_id (0) };

10 float tmp[colCnt ];

11

12 for (auto col { 0 }; col < colCnt; ++col) {
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13 tmp[col] = 0.0f;

14 }

15

16 // Load fiber boundaries: accFbrPtr[fbr] and accFbrPtr[fbr +1]

17 for (auto ele { accFbrPtr[fbr] }; ele < accFbrPtr[fbr + 1]; ++ele) {

18 // Load in -fiber index and value

19 const auto k { accKIdx[ele] - 1 };

20 const auto val { accValues[ele] };

21

22 // Load corresponding row of the matrix

23 // Compute product and accumulate

24 for (auto col { 0 }; col < colCnt; ++col) {

25 tmp[col] += val * accMatrix[k * colCnt + col];

26 }

27 }

28

29 // Store output fiber to to global memory

30 for (auto col { 0 }; col < colCnt; ++col) {

31 accOutput[fbr * colCnt + col] = tmp[col];

32 }

33 });

34 })

35 };

Listing 2: TTM Kernel v2

In kernel 2, the number of threads created is the same as the number of output fibers (line 2),
where each thread is responsible for computing the dot-products of the assigned fiber against all
columns of the matrix. Therefore each thread also starts by loading its fiber boundaries (line 17)
and then for all non-zero elements in that fiber it also loads both their in-fiber index as well as
their value (lines 19-20). As such, from the tensor, there are two loads (for boundaries) plus two
more loads for each non-zero element in the fiber. From the matrix, there are as many loads as
columns in the matrix for each non-zero element of the fiber (lines 24-26). As a result, the total
amount of loads is equal to 2 + 2×FbrLen+ FbrLen×ColCnt, where ColCnt denotes the total
amount of columns in the matrix. Since each thread computes the dot-product between a fiber
and all columns of the matrix (lines 24-26), the number of operations performed is one multiply
and one addition per column per non-zero element in the fiber, i.e., the total amount of FLOPs
is equal to 2×FbrLen×ColCnt. Since each thread in Kernel V2 generates one fiber of the output,
and the output fibers have as many elements as there are columns in matrix, then one store per
column is required (lines 30-32). This brings the total amount of stores to be equal to ColCnt.
Assuming all data types are 4-byte wide the AI can be expressed as follows:

AIv2 =
1

4

× 2 × FbrLen×ColCnt

2 + 2 × FbrLen+ FbrLen×ColCnt+ColCnt
=

=
1

2

× FbrLen×ColCnt

2 × (FbrLen+ 1) +ColCnt× (FbrLen+ 1)
=

=
1

2

× FbrLen

FbrLen+ 1

× ColCnt

ColCnt+ 2

(9)

According to the expression derived in 9, the AI varies depending on the number of non-zero
elements in the fiber as well as on the number of columns in the matrix. Again, these AIs will also
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always range between a minimum and a maximum value, which can be calculated in a similar
manner to the one previously adopted when analyzing the AI ranges for kernel V1. As before,
the minimum AI can be achieved when the fiber has the least non-zero elements (which is one),
and the matrix has the least number of columns (which is also one and occurs when the matrix is
a vector). As such, the minimum AI for the fiber-centric TTM approach can be expressed as:

min(AIv2) = min

(
1

2

× FbrLen

FbrLen+ 1

× ColCnt

ColCnt+ 2

)
=

1

2

× 1

2

× 1

3

=
1

12

(10)

The maximum AI, on the other hand, is achieved when the number of non-zero elements in
the fiber is large enough such that FbrLen

FbrLen+1
≈ 1 and the number of columns on the matrix is

large enough such that ColCnt
ColCnt+2

≈ 1. Correspondingly, the maximum AI for the fiber-centric
TTM approach can be expressed as follows:

max(AIv2) = max

(
1

2

× FbrLen

FbrLen+ 1

× ColCnt

ColCnt+ 2

)
≈ 1

2

× 1 × 1 =
1

2

(11)

Element-centric TTM vs. Fiber-centric TTM We focus herein on providing the comparison
between the Element-centric (Kernel V1) and Fiber-centric (Kernel V2) TTM data-parallel ap-
proaches by analyzing their ranges of attainable AI. Kernels 1 and 2 have the same minimum AI
(1/12), however kernel 2 has a 3× higher maximum AI (1/2 vs. 1/6). It is important to reinforce
that all calculations involving AI were done under the assumption that all fibers with no non-
zero elements are not introduced in the computation. If such fibers were to be introduced, the
maximum AI would remain unchanged, but the minimum AI would drop down to zero.

3.2.2 cpu/gpu ttm performance upper-bounds with synthetic sparse

tensors

A direct performance comparison between the two previously elaborated data-parallel TTM ap-
proaches also depends on other factors (other than the kernels’ AI ranges), such as the processing
capabilities of the device in which the TTM computation are performed (e.g., multi-core CPU
or GPU), as well as on the characteristics of the sparse tensor under evaluation. Therefore, the
following study aims at describing the behaviour of kernels 1 and 2, as well as uncovering their
performance upper-bounds, on two state-of-the-art compute devices, i.e., Intel Core i9-11900KB
(CPU) and on Intel 11th Gen UHD Graphics, which is the integrated GPU on the aforementioned
CPU. All experiments on both devices were performed under Intel’s Devcloud environment.

For this purpose, we also construct a set of synthetic sparse tensors in such a way that the
worst case and best case performance can be attained. These synthetic best-case and worst-case
sparse tensors are constructed based on the AI, derived in Equations 6 and 9, as well as on the
characteristics of the employed CPU and GPU devices. Furthermore, the performance for some
real-world tensors is also evaluated to serve as a term of comparison.

Best Case Performance Analysis The greatest challenges in most approaches to sparse TTM
are load balancing and data locality. While the first challenge can to some extent be mitigated
with efficient algorithms, the second challenge is mostly dependent on the specific features of
the sparse data-set used. For that reason the prime candidate to achieve maximum performance
with both kernels 1 and 2 is to construct a semi-sparse tensor, i.e., a tensor that is sparse in all its
dimensions except for one.
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Figure 47 Semi-sparse tensor and CSF’s representation of its fibers

This specific disposition, depicted in Figure 47, consists of a tensor with its horizontal mode
dense, meaning all fibers fibers of this mode are either empty or fully dense. In other words,
there are several dense fibers sparsely scattered across the tensor.

The distribution of the non-zero elements in the proposed best-case synthetic sparse tensor
allows for both load balancing, since all fibers have the same length, as well as data locality, since
all fibers access consecutively the rows of the matrix. To construct the best-case scenario, there
are three parameters that must be considered: i) FbrCnt – the number of fibers with non-zero
elements, ii) FbrLen – the number of non-zeros in each fiber and iii) ColCnt – the number of
columns in the matrix. Note that for this specific kind of tensor, since fibers are dense, the number
of rows of the matrix is the same as the number of non-zero elements in each fiber.

Two more parameters can be deduced from three aforementioned parameters, i.e., the number
of threads created and the matrix size, which may slightly differ depending on the kernel used.
For kernel 1, since every fiber-column dot product is assigned to a different thread, the number
of threads created is FbrCnt×ColCnt. On the other hand, for kernel 2, each thread computes
one fiber against the whole matrix, therefore the number of threads created is FbrCnt. Finally,
the size of the matrix is defined by FbrLen×ColCnt.

CPU Analysis The CPU architecture under evaluation (Intel Core i9-11900KB) involves a mem-
ory hierarchy that includes a set of private (L1 and L2) and shared L3 caches. As such, there
are different best cases depending on which of the cache levels is being addressed. Since the
fastest cache is L1, the best case corresponds to the scenario when the matrix elements fit into L1.
However, this requires the matrix to be very small which, according to Equations 6 and 9, causes
the AI to be very low. As it can be observed, it is non-trivial to find the optimal trade-off between
a cache fitting size and a high AI.

To determine this trade-off some empirical analysis is required, for which a starting point
is required and must be chosen bearing in mind three crucial aspects: i) FbrCnt should be
large enough, such that the workload is sufficiently large to provide the statistically relevant
measures; ii) FbrLen is large enough, such that the AI of the kernel is close to its maximum; and
iii) FbrLen×ColCnt is small enough, such that the matrix fits in the desired cache level. Let the
following parameters be considered as a starting point: FbrCnt = 131072 for both kernels, then
FbrLen = 256 for kernel 1 and FbrLen = 512 for kernel 2, and ColCnt = 64 for kernel 1 and
ColCnt = 256 for kernel 2.

Figure 48 shows the behaviour of kernels 1 and 2 when changing just one of the parameters at
a time, in this case the number of non-zero elements in the fiber. One can notice irregular spikes

SparCity 44



Figure 48 CPU performance for different num-
ber of non-zero elements in the fiber

Figure 49 CPU performance for different num-
ber of columns in the matrix

and drops of performance in the obtained experimental results for kernel 1, while for kernel 2

the performance does not change drastically. The spikes are explained by having a larger FbrLen,
since it provides higher AI and therefore allows for better performance. On the other hand, the
drops are explained by the cache levels in the architecture, i.e., whenever the matrix becomes
too large to fit in a cache level, the kernel becomes bound by the next level, which has lower
bandwidth, thus making the TTM execution slower.

In Figure 49, when increasing the number of columns, kernel 1 displays increasing perfor-
mance until ColCnt = 64 and then the performance starts to decrease, since the data-set no
longer fits in L1 cache. A similar behaviour can be observed for ColCnt = 1024, but for L2 cache.
Kernel’s 2 AI also depends on ColCnt, but its behaviour is similar, performance increases until
ColCnt = 256 and then slowly decreases as the number of columns is increasing.

Figure 50 provides the CARM characterization of kernels 1 and 2 for this specific CPU ar-
chitecture. The gray zone represents the theoretical limits of AI calculated for kernel 2, while
kernel’s 1 AI bounds are also within these limits. It is possible to observe that the performance of
both kernels is limited by the bandwidth of cache levels (kernel points are positioned between L2

and L3 rooflines), thus suggesting a high efficiency and data reuse in the synthetic tensors created
to simulate the best case performance scenario. It is also worth noting that due to compiler
optimisations, namely vectorization, kernel 1 achieves higher performance and AI than kernel 2.

GPU Analysis For the GPU analysis of proposed TTM approaches, we relied on Intel 11th Gen
UHD Graphics, which is the integrated GPU on Intel Core i9-11900KB. Given a memory-bound
nature of the TTM kernels, the best-case exploration strategy aims at ensuring that the AI of
kernels is as high as possible. In addition, the parallelism should be high in order to fully exploit
the massively parallel GPU architecture, while the matrix should fit in the GPU L3 cache, to avoid
additional loads from the CPU.

For kernel 1, this means making FbrLen sufficiently large such that Equation 8 is verified,
while ensuring FbrCnt× ColCnt large enough to keep the GPU units occupied and keeping
FbrLen×ColCnt small enough to ensure that the data-set fits in the GPU L3 cache. A similar
rationale is followed for kernel 2, where sufficiently large FbrLen and ColCnt should be provi-
sioned to satisfy Equation 11, while large enough FbrCnt is required to maximize the occupancy
of the GPU units. In addition, small enough FbrLen×ColCnt is needed to guarantee that the
data-set fits in the L3 cache. As in the CPU case, a starting point is required to be chosen accord-
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Figure 50 Roofline model for CPU best case scenario with both kernels

ing to these restriction, which is in this case set to: FbrCnt = 131072 which is enough to fully
utilize the GPU’s compute units, FbrLen = 512 which ensures AI very close to the theoretical
maximum and ColCnt = 64.

Figure 51 GPU performance for different num-
ber of non-zero elements in the fiber

Figure 52 GPU performance for different num-
ber of columns in the matrix

Figures 51, 52 and 53 depict the behaviour of kernels 1 and 2 on the tested GPU device
for different ranges of parameters on both kernels. In Figure 51, the performance of kernel 1

increases as the length of the fibers is increasing and starts stabilising around FbrLen = 256.
However, when FbrLen is increased even further performance starts to drop drastically for kernel
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Figure 53 GPU performance for different number of fibers with non-zero elements

1. The reason for this behaviour lies in the fact that the matrix size is directly proportional to the
FbrLen parameter, thus beyond the FbrLen = 2048 the matrix does not fit in GPU L3 cache. Such
phenomenon is not observed for kernel 2, since each thread has a fiber assigned and therefore it
efficiently streams through the tensor fibers. In Figure 52, the behaviour is very similar to the one
observed in Figure 51. Performance increases until ColCnt = 32 for kernel 1 and ColCnt = 64 for
kernel 2, where it maintains stable until ColCnt = 256 for kernel 1. After this point, any further
increase in matrix size results in reduced performance for both kernels. In Figure 53, one can
observe that the performance increases as the number of fibers is increasing and starts stabilising
around FbrCnt ⩾ 65536, signalling that the GPU units are fully occupied. As previously referred,
the fiber-centric TTM approach in kernel 2 creates less threads, concentrating more workload in
each thread, which leads to having more factors affecting its AI and making its behaviour more
irregular.

Finally, in Figure 54, the roofline model for the GPU architecture is presented. It is possible
to observe that the performance is very close to the maximum achievable by the device for the
corresponding AI in both kernels.

Worst Case Performance Analysis Following a similar reasoning as for the best case, it is also
possible to determine the worst-case TTM processing scenario in order the uncover the lower
bounds on the performance attainable with the proposed TTM kernels on both CPU and GPU
architectures. The strategy followed herein aims at analysing the worst case scenario under the
condition that the full utilization of processing resources is attained with a data distribution in
the specifically created synthetic sparse tensor that hinders performance.

For this purpose, the data distribution can be modeled with four parameters: i) FbrCnt – the
number of fibers with non-zero elements; ii) FbrLen – the number of non-zeros in each fiber;
iii) ColCnt – the number of columns in the matrix, and iv) RowCnt – the number of rows in
the matrix. It is important to notice that, unlike what happens in the semi-sparse tensor, the
number of non-zero elements in the fiber do not match the number of rows in the matrix. Instead,
RowCnt is now used to denote the effective size of the fiber, which is always greater than FbrLen.

Two more parameters can be deduced from these four parameters, which slightly differ
depending on the kernel used. For kernel 1, since every fiber-column dot product is assigned to a
different thread, the number of threads created is equal to FbrCnt×ColCnt. On the other hand,
for kernel 2, each thread computes one fiber against the whole matrix, therefore the number of
threads created is equal to FbrCnt. Finally, the size of the matrix is defined by RowCnt×ColCnt.
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Figure 54 Roofline model for GPU best case scenario with both kernels

To facilitate the comparison of the results obtained with this scenario to the previously pre-
sented ones, both FbrCnt and ColCnt were kept the same, while only RowCnt was varied. This
way, the workload is always kept at about the same size, with the only difference being the
distribution of the non-zero elements across the fibers.

CPU Analysis For the CPU, instead of targeting specific cache levels, the idea behind the
worst-case scenarios is to prevent any data reuse in the cache hierarchy, thus limiting the kernel
performance to the lowest bandwidth available in the CPU memory hierarchy, i.e., DRAM.

To further accentuate the worst case performance scenario, a lower AI is also desirable. For
kernel 1, this means making FbrLen = 1 such that Equation 7 is verified, while keeping RowCnt×
ColCnt large enough to ensure that the tensor data does not fit in any cache level. For kernel 2,
both FbrLen and ColCnt should be equal to one in order to satisfy Equation 10, while keeping
RowCnt×ColCnt large enough, such that the data-set does not fit in any cache level.

Figure 55 provides one possible representation of a synthetic worst-case sparse tensor with
long fibers, each with a single non-zero element. It is worth noting that the non-zero elements
are displaced across fibers in such a way that they do not allow for any reuse of the matrix
elements. To test and model the parameters of the proposed approach, we relied on Intel Core
i9-11900KB CPU, for which setting RowCnt = 524288 proved to be large enough to display a
minimal performance.

Figure 56 represents the roofline model for kernels 1 and 2 for Intel Core i9-11900KB CPU
under the worst-case performance scenarios. In both cases, it is possible to observe that the
objective of preventing data reuse in any of the cache levels is achieved, since both kernels
are positioned near the respective DRAM roof. It is possible to observe that due to compiler
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Figure 55 Depiction of worst case tensor

Figure 56 Roofline model for CPU worst case scenario with both kernels

optimisations, namely vectorization, kernel 1 achieves higher AI than kernel 2.

GPU Analysis In order to exercise the worst-case performance scenario on the GPU architecture,
it is necessary to construct the synthetic sparse tensors that allow for the kernels’ AI to be as low
as possible, since TTM is memory bound on the GPU, while also ensuring that the matrix does
not fit in the GPU L3 cache, thus enforcing constant loads from the CPU.

To create the worst-case synthetic sparse tensor for kernel 1, it is needed to ensure FbrLen = 1

such that Equation 7 is verified, while keeping RowCnt× ColCnt large enough such that the
matrix does not fit in GPU L3 cache. For kernel 2, both FbrLen and ColCnt should be equal to
one such that Equation 10 is satisfied, while keeping RowCnt×ColCnt large enough to prevent
reuse of matrix elements in GPU L3 cache.

As in the best-case scenario, we conducted our experiments on the Intel 11th Gen UHD
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Figure 57 GPU performance for different number of rows in the matrix

Graphics, integrated GPU on Intel Core i9-11900KB, in order to test and model the worst-case
parameters for this specific architecture. Figure 57 presents the performance variation of both
kernels with respect to the different RowCnt values. As it can be observed in Figure 57, the
performance is increasing with the increase of RowCnt. This happens because the size of the
matrix is increasing, thus forcing the GPU to load data from outside the GPU L3 cache.

Figure 58 Roofline model for GPU worst case scenario with both kernels

Figure 58 represents the roofline model for kernels 1 and 2 for this specific architecture under
the worst-case evaluation scenario. In both cases, it is possible to observe that the objective of
being outside of the GPU L3 cache is achieved. However, it is important to notice that, since
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ColCnt was kept at 64 columns (necessary to achieve a fair comparison), the AI of kernel 2 is
higher than the minimum.

Analysing Performance with Real-World Tensors After having both the worst and best case
scenarios discussed, and theoretically and experimentally verified, we focus herein on analysing
the proposed two approaches for TTM data-parallel processing in real-world execution scenarios.
For this analysis, the nell-2 and vast-3D tensors from the FROSTT data-set20 were used, as
described in Table 5. Since the majority of the tensor parameters are already predetermined by
their structure, the only parameter that can be modified for the TTM computation over those real
sparse tensors is the number of columns in the matrix, i.e., ColCnt.

nell-221 vast-3D22

FbrCnt 337 365 26 021 945

NNZ 76 879 419 26 021 945

Mode 0 12 092 165 427

Mode 1 9 184 11 374

Mode 2 28 818 2

Table 5 Description of the datasets used

CPU Analysis To explore the performance of real-world tensors on a multi-core CPU architec-
ture and provide comparison with the best and worst cases elaborated in the previous sections,
we relied on the Intel Core i9-11900KB CPU.

Given the characteristics of the nell-2 tensor, we can determine that it is expected to attain
the AI very close to the theoretical maximum (an average FbrLen = 228), while the matrix has
28818 rows (imposed by the mode-2 dimension), thus it never fits in L1 cache.

Figure 59 CPU performance for different num-
ber of columns in the matrix

Figure 60 AI on CPU for different number of
columns in the matrix

Figures 59 and 60 represent the performance and AI for both kernels for tensor nell-2 with the
increasing number of columns in the matrix. For kernel 1, the AI should be fixed, since it only

20Shaden Smith et al. FROSTT: The Formidable Repository of Open Sparse Tensors and Tools. 2017. url: http://frostt.
io/.

SparCity 51

http://frostt.io/
http://frostt.io/


depends on FbrLen and not on ColCnt, however from ColCnt = 16, the compiler is capable of
vectorizing kernel loops and therefore provoking an increase in both the AI and the performance.
On the other hand, for kernel 2, as expected, since the AI depends on the number of columns, it
starts with the same value as in the previous kernel and, with the increase in number of columns,
increases until very close value to the maximum calculated in Equation 11. However, since the
kernel loops are never vectorized by the compiler, the AI ends up dropping for larger workloads.
From ColCnt = 128, the performance starts reducing for kernel 1, while the AI is maintained,
since the matrix does not fit anymore in any of the caches of the CPU. On kernel 2, performance
increases with the AI as the problem is always memory bound for all cache levels but L1, where
the matrix would never fit anyway. It is also important to notice that the performance drops
mostly match with the sizes of the cache levels.

When compared with the performance of kernel 1 for the nell-2 tensor, the kernel 2 attains the
lower performance. The main reason behind this behavior lies in the irregularity of data accesses
and workload imbalance that were not present in the best case evaluation.

For the vast-3D tensor, which has all fibers with a single non-zero element, the AI should be
very close to the theoretical minimum. Due to its mode-2 dimension, the matrix only has 2 rows,
thus for all numbers of columns tested, it always fits in L1 cache.

Figure 61 CPU performance for different num-
ber of columns in the matrix

Figure 62 AI on CPU for different number of
columns in the matrix

Figures 61 and 62 represent the performance and AI of both kernels for tensor vast-3D with
the increase of number of columns in the matrix. As in the nell-2 tensor case, the expected
constant AI for kernel 1 was not observed due to the compiler optimisations, which provokes
an increase in both AI and kernel performance for a larger number of columns. This behaviour
can be observed around ColCnt = 16, where a notable AI increase occurs due to the compiler’s
ability to vectorize the kernel loops. Since the matrix always fits in L1 cache the performance drop
that happened in the nell-2 tensor for the same kernel does not happen with the vast-3D tensor.
For kernel 2, although the AI was expected to be lower, it is not due to compiler optimization,
it still behaves as expected. It starts with the same value as in the previous kernel and, with the
increase in number of columns, increases until very close to the maximum calculated in Equation
11. However, since the kernel loops are never vectorized by the compiler, the AI ends up dropping
for larger workloads. The performance also increases with the AI, which can be explained by
most of the workload coming from the number of columns, since each fiber only has one element
to compute.
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GPU Analysis Resorting again to Intel 11th Gen UHD Graphics, which is the integrated GPU on
Intel Core i9-11900KB, it is possible to test, for this specific architecture, these real-world tensors
and compare them with the best and worst cases explored in the previous sections.

As previously referred, the nell-2 tensor has an average of FbrLen = 228, thus its AI is very
close to the theoretical maximum. In addtion, the tensor has 337365 fibers, thus GPU occupation
is not an issue.

Figure 63 GPU performance for different num-
ber of columns in the matrix

Figure 64 AI on GPU for different number of
columns in the matrix

Figures 63 and 64 represent the performance and AI for both kernels for tensor nell-2 with
the increase of number of columns in the matrix. For kernel 1, the AI is fixed as it only depends
on the FbrLen and not on ColCnt. The main difference between this situation and the best case
scenario, described in Section 3.2.2, is the irregularity and unbalance in the distribution of the
non-zero elements over the fibers as well as the size of the matrix. For such reasons, the peak
performance is achieved for ColCnt = 32, instead of ColCnt = 64, and it is slightly lower than
the perfmance in the best case. For kernel 2, as expected, the AI starts with the same value as in
the previous kernel but increases until very close value to the theoretical maximum calculated in
Equation 11. The performance also increases with the AI as the problem is memory bound on
the GPU.

When compared with the performance of kernel 1 for the same tensor, this kernel performs
worst even though it performed better for the best case tensor. The main reason is the irregularity
in data accesses and workload imbalance that were not present in the best case, when kernel 2

was the better option.
Tensor vast-3D, which has all fibers with a single non-zero element, should force the kernel to

have an AI very close to the theoretical minimum. Due to a large number of fibers in this tensor
(26021945), the GPU occupancy is not an issue.

Figures 65 and 66 represent the performance and AI for both kernels for tensor vast-3D with
the increasing number of columns in the matrix. For kernel 1, the AI is fixed, as expected, since
it only depends on FbrLen and not ColCnt. The main difference between this situation and the
worst case scenario, described in Section 3.2.2, is RowCnt which causes the matrix to be much
smaller in this tensor. For kernel 2, again as expected, the AI starts with the same value as in
the previous kernel but increases with the increasing number of columns. The performance also
increases with the AI as TTM is by nature memory bound on the GPU.

When compared, kernel 2 performs better than kernel 1 for tensor vast-3D. The main reason
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Figure 65 GPU performance for different num-
ber of columns in the matrix

Figure 66 AI on GPU for different number of
columns in the matrix

is the matrix size, since it is so small, thus it is efficient to compute whole rows as it is likely that
the row is already cached. Finally, it is possible to create a roofline model sweeping the AI by
changing the number of columns. This analysis, however, is only applicable for kernel 2, since
in kernel 1 the AI is fixed, and for the GPU, since in the CPU the compiler tends to perform
optimizations which make the AI’s behaviour unpredictable. These can be found in Figures 67

and 68.

Figure 67 Roofline model for kernel 2 with tensor nell-2 on the GPU
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Figure 68 Roofline model for kernel 2 with tensor vast-3D on the GPU

4 communication and profiling tools for

emerging microarchitectures

4.1 extending communication analysis tools to amd

multicores

We developed ComDetective, an inter-thread communication analyzer, and ReuseTracker,
a reuse distance analyzer, that leverage the hardware features in AMD processors to support low-
overhead profiling. Both tools employ the instruction-based sampling (IBS) facility and debug
registers in AMD processors to detect inter-thread communication and data reuse. Different from
prior arts, ComDetective differentiates the communication into true and false sharing, and
ReuseTracker measures reuse distance in private and shared caches by also considering cache
line invalidation with low overhead. Both tools can attribute the communications and reuses
to source code lines. To our knowledge these tools are two of the few profiling tools designed
specifically for AMD x86 architectures using IBS. These tools are timely and relevant considering
the rise in numbers of AMD processor based data centers and HPC systems.

Even though the original communication detection and reuse distance algorithms remain un-
changed, extending the Intel-based profiling tools to the AMD multicores is not a straightforward
task and comes with many challenges. AMD IBS is very different from Intel PEBS in hardware
design as it can be programmed to count and sample only instruction fetches or executed micro-
operations. To target only specific events such as memory accesses for profiling, software-level
filtering is needed to choose only memory accesses among all micro-operation samples to be
taken as inputs for the profiling tool. Furthermore, AMD IBS requires certain BIOS software that
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is not widely available23 even in the cloud machines. As an alternative solution, we relied on a
Linux kernel module24 that allows us to program IBS hardware. Originally this kernel module is
designed to count hardware samples and produces a log of samples. As the kernel module has a
simplistic workflow, we extensively modified the kernel module in order to introduce additional
functionalities necessary for supporting our profiling tools.

4.1.1 ibs driver

We implement ComDetective and ReuseTracker on top of the open-source HPCToolkit
performance analysis tools suite.25 To profile multi-threaded applications in AMD machines,
both tools leverage IBS features.26 To configure and sample IBS, there are two possible options.
The first option is to use perf event open system call. However, this option requires certain BIOS
software, which is not always available by default27.28 The second option is to use a Linux kernel
module. Since using perf event open and the BIOS software is not a reliable option, we rely on
an open source Linux kernel module named AMD IBS Toolkit.29 For ease of prose, we refer to
this Linux kernel module as IBS driver. This IBS driver allows user application to configure IBS
and retrieve samples from IBS. This is a different approach from the way precise event sampling is
handled in Intel. Since the use of perf event open to program PEBS in Intel does not require any
special firmware, ComDetective and ReuseTracker could always leverage perf event open

to configure and sample PEBS.
Two flavors of sampling can be performed using IBS – fetched instruction sampling and

executed micro-operation sampling. The IBS driver allows user applications to enable or disable
IBS counters and set up sampling period using the ioctl interface of the driver. To further
support the profiling tools, additional capabilities need to be introduced to the IBS driver. These
capabilities are to i) allow user threads to register themselves as valid recipients of sampling
signals, ii) have the interrupt handler record only samples from memory accesses that have valid
effective addresses, iii) send OS signals from the interrupt handler to the user threads that trigger
the IBS interrupts if the threads are already registered and the samples are from memory accesses
with valid effective addresses.

Upon its installation, the IBS driver creates a number of character device files, each of which
serves as an interface to the IBS hardware of each CPU core. For ease of reference, we call a
character device file as a device file from this point on. The number of device files that are created
is twice the number of logical cores in the machine, such that for each logical core there are
two device files for sampling fetched instructions and executed micro-operations respectively.
After creating the device files, the IBS driver also registers a function as an interrupt handler that
will handle any hardware interrupt due to an IBS sample. Note that for the profiling tools we
are interested in executed micro-operations because load and store operations that we need to

23Joseph L. Greathouse. Re: Error : IBS profiling is disabled in your BIOS. https://community.amd.com/t5/general-
discussions/error- ibs- profiling- is- disabled- in- your- bios/td- p/55043. AMD Community; Joseph L.
Greathouse. Re: IBS not available on EPYC 7451 ? https://community.amd.com/t5/server-gurus-discussions/ibs-

not-available-on-epyc-7451/m-p/258228. AMD Community.
24Joseph L. Greathouse. AMD Research Instruction Based Sampling Toolkit. https://github.com/jlgreathouse/AMD_

IBS_Toolkit. 2017.
25L. Adhianto et al. “HPCToolkit: Tools for Performance Analysis of Optimized Parallel Programs”. Concurrency

Computation: Practice Experience 22.6 (2010), pp. 685–701.
26Paul J. Drongowski. Instruction-Based Sampling: A New Performance Analysis Technique for AMD Family 10h Processors.

https://pdfs.semanticscholar.org/5219/4b43b8385ce39b2b08ecd409c753e0efafe5.pdf. 2007.
27Greathouse, Re: Error : IBS profiling is disabled in your BIOS .
28Greathouse, Re: IBS not available on EPYC 7451 ?
29Greathouse, AMD Research Instruction Based Sampling Toolkit.
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Figure 69 One possible workflow scenario of the IBS driver: 0) Every thread calls open system call to get the
file descriptor of the device file that corresponds to the core it is running on. 1) Every thread uses ioctl system
call on the file descriptor to configure the sampling period of IBS, sets up the size of the ring buffer that will
contain sampled data, registers its thread ID to the interrupt handler, and initializes the IBS counter. 2) Thread
Ti’s IBS counter overflows, the interrupt handler handles the hardware interrupt triggered by the overflow, and
the interrupt handler copies the sampled data from IBS’ model-specific registers (MSRs) to the ring buffer. 3)
The interrupt handler sends an OS signal to the thread that triggered the interrupt, i.e. thread Ti. 4) A signal
handler that runs in Ti’s address space handles the OS signal, and reads the device file to retrieve the sampled
data.

monitor are subsets of micro-operations.

4.1.2 interaction between ibs driver and profiling tools

Figure 69 displays the workflow of the IBS driver during profiling. When ComDetective

or ReuseTracker begins profiling an application, each application thread, which also runs
the profiling tool’s code in its address space, opens a device file for sampling executed micro-
operations that belongs to the logical core it is running on. By interfacing with the device file
using the ioctl system call, each thread configures the sampling period of IBS in its core, sets
up the size of the ring buffer that will contain sampled data, and activates IBS counter in its core.
In addition to these configurations, we modified the IBS driver to allow a thread to register its
thread ID so that the sampling interrupts whose sampled data are to be copied to a ring buffer
by the interrupt handler are only those encountered by registered threads. Facilitated by this
modification, each application thread also registers its thread ID in the beginning of profiling.

When an IBS counter overflow happens in a CPU core, a hardware interrupt is triggered and
the interrupt handler is called by the IBS driver. This interrupt handler copies sampled data from
IBS’ special purpose registers in that CPU core to a ring buffer. Since both ComDetective and
ReuseTracker only need memory access samples to profile multithreaded code, we modified
the interrupt handler to allow only micro-operation samples that are memory accesses with valid
instruction pointers and valid effective addresses to be copied to the ring buffer. For ease of
reference, we refer to these samples as valid samples. To access the sampled data from the ring
buffer, a user thread needs to read it from the device file that belongs to the CPU core.

By default, the IBS driver does not support signal delivery to user threads upon sampling
interrupt. To enable profiling threads to get notified every time a valid sample occurs, we modified
the IBS driver to send an OS signal to the user thread that triggers the interrupt. At a sampling
interrupt, an OS signal will be sent to the user thread that causes the interrupt only if that thread
has registered itself to the IBS driver. Upon handling a sampling signal, a profiling thread reads
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the device file corresponding to the CPU core that encounters the interrupt to retrieve the sampled
data.

In AMD machines, both ComDetective and ReuseTracker interface with the modified
IBS driver to configure the parameters of IBS sampling, and retrieve data from valid samples. In
each IBS sample, both tools read the IbsDcLinAd and IbsOpMemWidth attributes of the sampled
data to extract the sampled effective address and the width of the accessed memory region
respectively. In addition to getting sampled addresses, ComDetective also checks the IbsStOp

and IbsLdOp flags of each sample to see if a sampled memory access is a store or a load operation.
For time reuse distance computation in ReuseTracker, a separate hardware counter aside

from IBS is used to count the number of memory accesses between a use and a reuse. This
hardware counter is the counter for dispatched load or store micro-operations. When computing
time reuse distance for intra-thread profiling, the time reuse distance is the subtraction of a CPU
core’s hardware counter value at use from the counter’s value at reuse. In shared cache profiling,
the time reuse distance is the subtraction of the sum of counter values of all CPU cores that share
the same shared cache at use from the sum of counter values of the same CPU cores at reuse.

(a) blackscholes (b) bodytrack (c) streamcluster (d) freqmine

Figure 70 Communication matrices of some PARSEC benchmarks in the Intel machine.

(a) blackscholes (b) bodytrack (c) streamcluster (d) freqmine

Figure 71 Communication matrices of some PARSEC benchmarks in the AMD machine.
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Figure 72 Histograms of reuse distance in private caches of some PARSEC benchmarks in the Intel machine.

We perform experiments to evaluate the accuracy and overheads of the proposed tools on an
AMD machine with two-socket EPYC 7352 processors. ComDetective exhibits high accuracy
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Figure 73 Histograms of reuse distance in private caches of some PARSEC benchmarks in the AMD machine.

while introducing 5.14× runtime and 1.4× memory overheads. ReuseTracker also displays
high accuracy, which is 95%, with 11.76× runtime and 1.46× memory overheads. These overheads
are much lower than the overheads of existing simulators and code instrumentation-based tools.
Lastly, we demonstrate the usage of the tools by having ComDetective and ReuseTracker

facilitate the code refactoring of two data mining benchmarks to improve their performance by
up to 29%.

4.1.3 evaluation: comdetective on amd vs intel

Our AMD machine is a 2-socket AMD EPYC 7352 CPU from Zen 2 microarchitecture family.
There are 24 cores per socket with 2-way simultaneous multi-threading in this machine, and each
core has its own local L1i, L1d, and L2 caches. We use Linux 5.11.0 and GNU-10.3.0 toolchain
in this machine. The Intel machine is a 2-socket Intel Xeon Gold 6258R CPU from Cascade Lake
microarchitecture family. There are 28 cores per socket and one thread per physical core in the
machine. Each core also has its own private L1i, L1d, and L2 caches. The Intel machine runs
Linux 5.11.0 and GNU-10.2.1 toolchain. Unless otherwise stated, the default sampling interval is
50K, the default number of debug registers that we use in each core is 4, and the default number
of threads in each benchmark is 32 where each thread runs on its own physical core. In each
experiment, the threads are distributed evenly across the two sockets, and the threads in each
socket are bound to CPU cores with compact mapping30 strategy by default.

We present and analyze the communication matrices of four PARSEC benchmarks, blacksc-
holes, bodytrack, streamcluster, and freqmine, generated from the Intel and AMD machines using
ComDetective. The sampling period that we use in this experiment is 500K, which is the
default sampling period in ComDetective.31

Figures 70 and 71 present the communication matrices produced in the two machines with x

and y axes show the core ids to which all threads are pinned. As can be seen in the two sets of
figures, ComDetective captures the most frequent communication patterns in all benchmarks
in both machines. As there is very little to no communication in blackscholes, the communication
matrices generated by the AMD and Intel versions of the tool are empty. Both tools could
also detect one-to-all communication patterns in bodytrack and freqmine, though the patterns in
bodytrack’s matrices look more intense as the one-to-all communications happen more frequently
in bodytrack. There is also a difference between the freqmine’s matrices generated in the Intel
and the AMD machines. In the Intel machine, the one thread that communicates with all of the
other threads is the thread pinned to core 0, while in the AMD machine, that one thread is the

30Compact mapping assigns the thread t+ 1 to a free thread context as close as possible to the thread context where
the thread t is placed.

31Muhammad Aditya Sasongko et al. “ComDetective: A Lightweight Communication Detection Tool for Threads”.
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Denver,
Colorado: Association for Computing Machinery, 2019. doi: 10.1145/3295500.3356214. url: https://doi.org/10.
1145/3295500.3356214.
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one pinned to core 27. From the matrices of bodytrack and streamcluster, we could also see that
ComDetective detects more communications in the Intel machine than in the AMD machine.
This result could be attributed to the fact that Intel PEBS can be programmed to sample only
memory loads and memory stores, while AMD IBS introduces randomization and samples any
kind of micro-operations. Therefore, under the same sampling period, i.e. 500K, Intel PEBS could
get more memory access samples than AMD IBS.

4.1.4 evaluation: reusetracker on amd vs intel

Next, we present and analyze the reuse distance histograms of four PARSEC benchmarks running
on AMD and Intel machines using ReuseTracker. Figures 72 and 73 display the histograms
of reuse distance at private cache level generated in the Intel and AMD machines. Most of the
reuses in blackscholes, bodytrack, streamcluster, and freqmine are shown to be short in distances both
in the Intel and the AMD machines. However, there are higher portion of reuses detected in
mid-range distances in bodytrack and streamcluster. The patterns generated from the Intel and
AMD machines are nearly the same except those from freqmine. There are more mid-range and
longer-range spatial reuses detected by ReuseTracker in the AMD machine.

4.1.5 conclusion

Data movement and locality are important factors that affect the performance of multithreaded
applications. We developed COMDETECTIVE+ and REUSETRACKER+, profiling tools that lever-
age IBS facility on AMD and debug registers to detect inter-thread communications and measure
reuse distance in multithreaded code running on AMD machines. In this work, we presented
the implementation of the profiling tools and the Linux kernel module needed by the tools to
interface with the IBS facility. We also reported an experimental study that evaluates the tools’
accuracy, their sensitivity to different sampling intervals and debug register counts, and their
overheads. In our experiments, COMDETECTIVE+ displays high accuracy in capturing total com-
munication counts, differentiating true sharing from false sharing, and capturing communication
patterns, while REUSETRACKER+ shows high accuracy in measuring reuse distance in private
caches with and without cache line invalidations involved. Both tools also exhibit overheads that
are lower than cycle accurate simulators and code instrumentation tools.

4.2 investigating cache partitioning for spmv on the a64fx

processor

Given the preliminary results and methods for cache partitioning presented in Deliverable 1.2,
we extend the results by an evaluation and analysis of the effect of cache partitioning in SpMV
on the A64FX processor using several real-life matrices from cardiac electrophysiology.

First, we briefly explain cache partitioning on the A64FX. Second, we show the effect of cache
partitioning in SpMV with performance results from measurements on the A64FX. Finally, we
compare the measurements to predictions obtained from our profiling tool.

Cache partitioning allows dividing a cache into multiple partitions. Fujitsu’s A64FX processor
is equipped with a way-based hardware cache partitioning mechanism, named sector cache.32 It
enables partitioning the L1D and L2 caches and assigning a program’s data objects (e.g. arrays) to
partitions. The partitioning policy (partition sizes and data assignment) can be chosen dynamically
at runtime and without flushing the cache. Partition sizes are set by allocating a number of

32A64FX Microarchitecture Manual. Version 1.5. Fujitsu Limited. 2021. url: https://github.com/fujitsu/A64FX/
blob/master/doc/.
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cache ways to partitions (sectors). The data assignment is specified on each memory instruction,
encoded in the otherwise unused top byte of the virtual address.

4.2.1 using fujitsu’s c compiler for cache partitioning in spmv on a64fx

The Fujitsu C Compiler (FCC) provides compiler directives to specify the partitioning policy in
application code for the A64FX processor. Listing 3 shows an example of using the directives
in SpMV (ELL format). #pragma scache isolate way specifies the number of cache ways allo-
cated to sector 1. #pragma scache isolate assign specifies the data objects (arrays or pointers)
assigned to sector 1. Other data is assigned to sector 0. Assigning the non-temporal matrix data
(a and colidx) to a partition of minimal size increases the effective cache space and reuse of the
vector x in this code.

1 #pragma procedure scache_isolate_way L2=4

2 #pragma procedure scache_isolate_assign a colidx

3 #pragma omp for

4 for (int i = 0; i < num_rows; i++) {

5 double yi = 0.0;

6 for (int j = 0; j < rowsize; j++)

7 yi += a[i*rowsize+j] * x[colidx[i*rowsize+j]];

8 y[i] += ad[i]*x[i] + yi;

9 }

Listing 3: SpMV in ELL format using the FCC sector cache compiler directives.

4.2.2 experimental setup

We run the ELL SpMV code from Listing 3 on the A64FX processor with and without enabling
the L2 sector cache using 1, 12, and 48 threads. The A64FX is a 48-core processor with private
64 KiB 4-way L1D caches and four 8 MiB 16-way L2 caches, each shared by 12 cores. Table 6

shows the 7 sparse matrices of increasing size used in this experiment. The matrices are square
matrices with 16 non-zeroes per row.

Matrix Rows, Cols NNZs Size [MiB]

heart01 4,717 53,633 0.61

heart02 210,101 2,937,795 33.62

heart03 1,607,708 23,597,002 270.05

heart04 3,031,704 44,986,514 514.83

heart05 7,205,076 107,994,304 1,235.90

heart06 23,595,379 357,427,713 4,090.44

heart07 55,603,164 846,710,472 9,689.83

Table 6 Matrices heart01-heart07 (square matrices, 16 NNZs per row) .

4.2.3 performance results

Table 7 shows the effect on performance and the memory bandwidth utilization using the sector
cache. Except matrix heart01, which fits into L2 cache, the sector cache improves performance.

For the larger matrices heart03-07, the speedup that results from enabling the sector cache is
about 6 % for a single thread, 13 % to 18 % when using 12 threads, and 15 % to 29 % when using

SparCity 61



Matrix Threads
No Sector Cache With Sector Cache Sector Cache

GFLOPs GiB/s (Mem) GFLOPs GiB/s (Mem) Speedup

heart01

1 2.46 0.04 2.11 0.08 0.86

12 10.21 0.20 5.35 0.20 0.52

48 9.23 1.18 3.36 2.98 0.36

heart02

1 1.60 10.57 1.88 10.95 1.18

12 15.62 82.10 17.91 73.90 1.15

48 48.97 176.39 50.59 105.40 1.03

heart03

1 1.40 9.58 1.48 9.88 1.06

12 11.80 86.27 13.88 92.08 1.18

48 41.13 266.62 52.13 274.13 1.27

heart04

1 1.35 9.24 1.43 9.54 1.06

12 11.00 83.66 12.97 90.15 1.18

48 36.35 261.51 46.98 287.02 1.29

heart05

1 1.28 8.90 1.37 9.20 1.06

12 10.51 82.37 12.19 87.87 1.16

48 32.55 251.14 40.87 277.55 1.26

heart06

1 1.19 8.32 1.26 8.59 1.07

12 10.09 81.73 11.56 86.29 1.15

48 37.02 298.90 42.98 310.57 1.16

heart07

1 1.14 8.05 1.21 8.29 1.06

12 9.64 79.12 10.88 82.74 1.13

48 36.04 296.47 41.62 314.04 1.15

Table 7 Measured performance and memory bandwidth in ELL SpMV on A64FX with and without using
the sector cache.

48 threads. The sector cache also improves memory bandwidth utilization, typically by about 3 %
for a single thread, 6 % for 12 threads, and 3 % to 11 % in the case of 48 threads.

4.2.4 cache partitioning profiling tool

We have developed a profiling tool able to model the effect of cache partitioning in programs.
The profiling tool uses Intel PIN33 for dynamic binary instrumentation. It records reuse distance
histograms for each of the program’s data objects to estimate the number of cache misses in case
a data object was assigned to a separate cache partition. The tool is not specifically tailored to the
A64FX processor or SpMV programs. However, we can assess the effect of cache partitioning in
SpMV on the A64FX using the profiling results.

Limitations There are several limitations to the approach and implementation of the profiling
tool:

1. Conflict misses and additional misses due to prefetching or deviations from LRU replace-
ment policy are not modeled because the cache miss model is solely based on reuse distance.

2. The profiling tool can only make predictions for a single (shared) cache.

33Chi-Keung Luk et al. “Pin: building customized program analysis tools with dynamic instrumentation”. Acm
sigplan notices 40.6 (2005), pp. 190–200.
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Matrix Threads
A64FX measurement Tool prediction

L2 misses L2 misses Reduction L2 misses L2 misses Reduction
(no SC) (with SC) [%] (no SC) (with SC) [%]

heart01

1 17 60 -256.43 2 2 0.00

12 62 130 -109.43 14 14 0.00

heart02

1 184,247 167,958 8.84 177,749 164,145 7.65

12 185,405 166,866 10.00 175,885 164,234 6.62

heart03

1 1,430,013 1,395,992 2.38 1,402,995 1,359,003 3.14

12 1,586,047 1,469,304 7.36 1,511,264 1,394,574 7.72

heart04

1 2,713,609 2,646,205 2.48 2,654,124 2,580,360 2.78

12 3,079,859 2,851,425 7.42 2,917,656 2,697,232 7.55

heart05

1 6,517,442 6,327,621 2.91 6,365,396 6,150,540 3.38

12 7,490,161 6,900,145 7.88 7,077,854 6,554,938 7.39

heart06

1 21,650,039 20,919,861 3.37 21,084,183 20,248,820 3.96

12 25,309,557 23,320,884 7.86 23,708,561 21,976,032 7.31

heart07

1 51,419,229 49,643,523 3.45 50,034,179 47,902,638 4.26

12 60,698,083 55,946,986 7.83 56,591,793 52,480,861 7.26

Table 8 Measured and estimated number of cache misses with and without used the sector cache and cache
miss reduction.

3. The tool can only profile x86 binaries because it uses Intel PIN for instrumentation.

Limitation (1) is inherent to reuse distance analysis and cannot be resolved without using a
different approach. Limitation (2) can be resolved by extending the profiling tool implementation
to allow multiple (shared) caches. Finally, limitation (3) can be resolved by implementing the reuse
distance profiling with another method or framework that is compatible with other instruction
sets.

Comparison of Measured and Estimated Cache Misses In this section, we show measurements
of hardware performance events of L2 cache misses and compare the measurements to the cache
miss prediction from our profiling tool. We use the same matrices during profiling, but use only
up to 12 threads running in the locality domain of a single shared L2 cache. This is because the
profiling tool is unable to make predictions for multiple shared caches yet.

Table 8 shows the measured and estimated number of L2 cache misses without using the
sector cache as well as using the partitioning policy from Listing 3. The resulting measured and
estimated cache miss reduction is also shown.

Matrix heart01 completely fits into L2 cache and the measurement confirms the tool’s findings
that using the sector cache in this case does not reduce the cache misses. For matrix heart02-
07, cache partitioning indeed improves cache behavior as indicated by the profiling tool. The
predicted number is consistently below the real value. This is expected because of limitation (1)
discussed in Section 4.2.4. However, the prediction for the total number of cache misses as well
as the cache miss reduction is fairly accurate. The mean absolute percentage error (MAPE) of
the predictions for the L2 cache misses for matrices heart02-07 is MAPEnoSC = (4.08 ± 1.73) %
and MAPESC = (3.83 ± 1.57) %. For the miss reduction, we obtain MAPEreduction = (14.56 ±
10.43) %.
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5 digital supertwin

As reported in the previous deliverables, SuperTwin manages several other tools by generating
and encoding information in a digital twin data structure called SuperTwin Description (STD).
STD enables SuperTwin to make distinct information on distinct systems available to each other
and create a linked-data system.

SuperTwin 
Daemon

Pointers

Digital Twin
Description

Target System

Twin Description
Manager

Probe

Twin Description
Generator

Observation SamplerMonitor Sampler

TimeSeries  
Data

Run Configuration

Benchmarks

Performance Model
Generation

Host System

Dashboard
Generation

Monitor Dashboard

Observation Analyzer
Roofline Dashboard

Observation
Dashboard

Process Handler

Process Dashboard

Comparison
Dashboard

Figure 74 Current structure for a summary of SuperTwin modules. Amber lines highlight the monitoring
pipeline that is always on. Green nodes present functional modules, and blue nodes present configuration
modules. Every other functional module on this figure is inherently invoked by the SuperTwin daemon. Monitor
sampler is configured to perform low-frequency system status metric readings, that are mostly reported by
the operating system, such as CPU and memory utilization, resource usage of individual processes, NUMA
statistics, power usage etc. Observation sampler is configured to perform readings for hardware performance
events that are reported by the PMUs. Such as cache misses, number and type of floating operations and
instructions per cycle.

5.1 supertwin description

Digital Twin Description comprises several classes and relations between them, representing
properties and hierarchy in a system. STD both; captures a semantic description of the target
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system and enables a linked time-series structure similar to the framework proposed in34 but with
far richer metadata and contemporary metadata instantiations of events. For example, individual
components, observations, and processes also have their digital twin descriptions with linked
time-series data. This enables a fine-grain analysis of the behavior of applications to run on
different systems with different software and hardware. For example, an L1 cache, a network
interface, or a process can be isolated from the system, analyzed separately, or compared with its
equivalent on a different system.

CPUs Mem

Network PMU

STD

CPUs Mem

Network PMU

STD

CPUs Mem

Network PMU

STD

CPUs Mem

Network PMU

STDSuperTwin

System 2

System 1

System 3

System 4

Figure 75 Linked data approach of SuperTwin. Since the structure of metamodel classes of different STD
instantiations for different systems are identical, and every STD instance has the highlighted property of
recursive interfaces; every subcomponent of every SuperTwin instance can be isolated from their systems and
compared on-the-fly.

DTDL, as explained in previous deliverables have a recursive structure that allows components
(interfaces in the context of twin description) to be other components’ subcomponents which is
important for describing a cyber-physical system. On top of that, DTDL models Telemetry,

Properties and Relationship have exact correspondence between what they describe in DTDL
and STD. However, since DTDL is designed with IOT systems in mind, its descriptions are
more physical than cyber-physical and are meant to be static. For example, in the context of
a smart home, a sensor is statically attached to a wall in a room and reports the same pre-
determined metrics constantly. However, in the context of computers, the number of metrics,
frequency of readings, and metrics themselves are subject to constant change. To this end,
DTDL is modified, and new classes and properties are added to describe high-performance
computing systems and create linked time-series data. The update made on DTDL to acquire STD
ontology can be seen in Table 9. Among the newly added metamodels, ObservationInterface is
inherently different from others. To be able to generate structured queries using other metamodels,
ObservationInterface acts as a registry. For example, when an application is executed and

34Friedemann. “Linked Data Architecture for Assistance and Traceability in Smart Manufacturing”. MATEC Web of
Conferences 304 (2019), p. 04006. doi: 10.1051/matecconf/201930404006.
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registered within a ObservationInterface, the exact time that execution take place is known
via @id field, since every reading is recorded to the time-series database with the observation’s
unique id as tag. Collected performance metric readings of individual threads are accessible via
generating queries with involved threads and sampled hw metrics. A system snapshot during the
executions can be taken via a generated query that uses sampled sw metrics.
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Property Description

@type Interface
@id Unique identifier within digital twin for interface

contents
a set of Interface, Process Interface, ObservationInterface, SWTelemetry,
HWTelemetry, Benchmark, Properties, Relationships

displayName Name to be displayed when instantiated
dashboard dashboard url, optional

@type SWTelemetry
@id Unique identifier within digital twin for this telemetry instance
name index in telemetries
instance instance name of reported component to be parameter in queries
samplerName name of the metric to be referred during sampler configuration
DBName name of the metric to be used in generation of queries

@type HWTelemetry
@id Unique identifier within digital twin for this telemetry instance
name index in telemetries
instance instance name of reported component to be parameter in queries
samplerName name of the metric to be referred during sampler configuration
DBName name of the metric to be used in generation of queries

PMUName
name of the metric as reported by libpfm4. To be used as parameter
in perf event configuration

@type ProcessInterface
@id Unique identifier within digital twin for this process
displayName Name of the process to be displayed when instantiated
PID Current process ID. This may dynamically change
contents a set of Properties, Relationships and SWTelemetry
dashboard url of the dashboard that is generated exclusively for this process, optional

@type BenchmarkInterface
@id Unique identifier within digital twin for interface
contents BenchmarkResult
displayName Name of the benchmark to be displayed when instantiated
dashboard url of the dashboard for the readings during benchmark, optional

@type BenchmarkResult
@id Unique identifier within digital twin for this telemetry instance
field name of field for subkernels, optional
no threads number of threads used
involved threads involved thread indexes to be used in queries
modifier modifications in pinning strategy or compilation
result result of benchmark
unit unit of benchmark result
sampled sw metrics sampled software metrics during execution, to be used in queries, optional
sampled hw metrics sampled hardware metrics during execution, to be used in queries, optional
dashboard url of the dashboard that is generated specifically for benchmark field, optional

@type ObservationInterface
@id Unique identifier within digital twin for interface
displayName Name to be displayed when instantiated
time duration of observation
command executed command
time duration of observation
no threads number of threads used
involved threads involved thread indexes to be used in queries
sampled sw metrics sampled software metrics during execution, to be used in queries
sampled hw metrics sampled hardware metrics during execution, to be used in queries
modifier any modification made to the environment, optionak
dashboard dashboard url of collected metrics, optional

Table 9 New metamodel classes added to DTDL to build STD.
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1 def add my metrics ( component ) :
2 f o r metr ic in a v a i l a b l e m e t r i c s :
3 i f ( component . type == metr ic . type ) :
4 add telemetry ( component , metr ic )
5

6 def add component ( component , subcomponent ) :
7 add to twin ( subcomponent )
8 add my metrics ( subcomponent )
9 add ownership ( component , subcomponent )

10

11 def add subcomponents ( component , subcomponents ) :
12 f o r socket in system :
13 add component ( system , socket )
14 f o r core in socket :
15 add component ( socket , core )
16 f o r thread in core :
17 add component ( socket , thread )
18 f o r cache in cache groups [ thread ] :
19 add component ( thread , cache )
20

21 def add agents ( component , subcomponent ) :
22 f o r agent in pcp :
23 r e s o l v e p r o c e s s s t a t e ( agent )
24 add component ( system , agent )
25

26 def g e n e r a t e t w i n d e s c r i p t i o n ( system probing ) :
27 system = crea te sys tem ( )
28 add subcomponents ( system , cpus )
29 add component ( system , memory)
30 add component ( system , disks )
31 add component ( system , networks )
32 add component ( system , gpus )
33 add component ( system , proc )
34 add agents ( system , pcp )

Listing 4: STD is generated via both contextual and structural information probed
from the target system. The processes and framework component could also be
represented in the STD. By leveraging resolve process state() method processes can
be reinstated on-the-fly. Since the only change in their respective digital twins will
be their PIDs; only the configuration of the sampling module will be affected and
queries that will later be used to access readings will remain the same.

After acquiring system information via probing, STD is generated using this information.
During the generation of STD, every single physical component that performs computations, com-
munications, or I/O operations is presented with an Interface. Every hierarchical relationship
between these components is encoded into the contents of these interfaces with a Relationship

entry. Available metrics from these components are also filtered and encoded via SWTelemetry

and HWTelemetry. Therefore, both precisely pinned executions and advanced semantic queries
were made available. Those interfaces later use values to configure samplers and locate their
values in the database. For example, using generated STD and run configuration module, an exe-
cution that will run on 8 threads on each socket that does not share an L1 cache can be launched;
similarly, after the execution of a run, performance metrics from threads that share same L2 cache
with a given thread can be queried.

Another unique contribution of SuperTwin is that processes also can be modeled as digital
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twins and monitored via per-process kernel metrics as in Listing 4. JSON-LD objects are serialized,
which means string values from the JSON object are instantiated with given parameters into a
run-time object. In SuperTwin, there are two degrees of serialization. All models other than
ProcessInterface are serialized and got their values assigned at the generation time; however,
ProcessInterface is re-instantiated every time they are invoked and their metadata is changed
due to the dynamic nature of processes.

1 def ConstructTwin ( IP , user , password ) :
2 name , p r o b f i l e = remote probe ( IP , user , password )
3 mongodb addr , inf luxdb addr , grafana addr = read environment ( )
4 influx name , mongodb name , grafana name = c r e a t e d a t a s o u r c e s ( )
5 mongodb id = i n s e r t t w i n d e s c r i p t i o n ( g e n e r a t e t w i n d e s c r i p t i o n (

↪→ p r o b e f i l e ) ) #Method in L i s t i n g 1

6 #From t h i s moment , SuperTwin d e s c r i p t i o n and o b j e c t i s a v a i l a b l e to
↪→ i n t e r a c t

7 SuperTwin . add cache aware roofl ine benchmark ( )
8 SuperTwin . monitor metr ics = read from environment ( )
9 SuperTwin . o b s e r v a t i o n m e t r i c s = read from environment ( )

10 SuperTwin . monitor pid = s t a r t s a m p l i n g ( )
11 SuperTwin . generate monitoring dashboard ( )
12 SuperTwin . c o n f i g u r e o b s e r v a t i o n e v e n t s ( o b s e r v a t i o n m e t r i c s )
13 SuperTwin . observat ion ( add stream benchmark ( ) )
14 SuperTwin . observat ion ( add hpcg benchmark ( ) )
15 SuperTwin . genera te roof l ine dashboard ( )
16 SuperTwin . r e g i s t e r s t a t e ( SuperTwin . r u n t i m e v a r i a b l e s )
17

18

19 def ReConstructTwin ( IP ) # or ReConstructTwin (Name) :
20 db id = db lookup ( IP ) # or Name
21 SuperTwin = r e c o n s t r u c t ( db [ db id ] [ t w i n d e s c r i p t i o n ] , db [ db id ] [

↪→ r u n t i m e v a r i a b l e s ] )

Listing 5: Instatiation of a SuperTwin object from scratch

A SuperTwin object in Python uses generated STD as its main look-up table, for generating
configurations for third-party frameworks and generating queries for visualization and analyses.
After the generation of STD, every other SuperTwin module is callable and uses inherently STD for
their operations and alters the STD, encoding information through time. SuperTwin object later
can be re-constructed using STD and other run-time variables that are updated in the database
throughout the execution.

5.2 sampling framework

Performance Co-Pilot has metric samplers responsible for a metric domain. PMDAs are installed
beforehand the sampling takes place, but they do not report values on their own. To sample
metrics, a monitor framework needs to send requests to the target system PMCD. SuperTwin uses
pcp2influxdb as a monitor framework. The monitor framework, however, has a configuration
that specifies metrics to be collected, instance domains of these metrics, frequency of the sampling,
database address, and bucket to write metrics. Software metrics can be sampled by querying
their parameters from SuperTwin and running pcp2influxdb with a generated configuration file.
However, perfevent PMDA must be re-configured every time requested metrics are changed to
set PMUs report requested metrics. After probing the target system and acquiring MSRs and
available events, parameters required to re-configure a remote PMU can be queried from STD.
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SuperTwin also employs a perf reconfiguration module that queries this data from STD and
reconfigures remote PMU automatically if a change in hardware telemetry in requested metrics
is detected. After the reconfiguration, hardware telemetry can be sampled and recorded for
corresponding observation. This process can be seen in Figure 76.

5.3 monitoring

Software and hardware telemetry differ in their meaning and effect on the execution performance.
Hardware metrics are direct measurements of performance events that took place within the CPU
and are directly related to performance and could give definite reasoning for observed perfor-
mance. For example, an exceptionally high L1 miss rate is thought to be primarily responsible for
low performance and may not be resolved without source code optimization. On the other hand,
software metrics do not give a cause directly related to the application but provide a picture of
the system state during execution and could reveal system-related anomalies such as resource
contention, thermal throttle, memory leak, or poor affinity. Therefore, in SuperTwin, software,
and hardware telemetry are separated. This also allows the sampling of software and hardware
metrics with different frequencies. This is called the monitoring part of profiling in the SuperTwin
context. Monitoring data can be used to model the remote system as a whole, predict possible
faults and mitigate them before they happen. A configuration for monitoring is generated just
after the generation of STD and monitoring starts.
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Figure 76 To sample hardware metrics with perfevent PMDA. PMUs are re-configured beforehand the
observation takes place.

5.4 observation

When kernels are executed with direct measurements of performance events, SuperTwin uses shell
scripts as function wrappers. Whenever there is a need to set a directory, affinity, environment
variables, or execute a binary, the Observation module, using the Run Configuration module as a
helper tool, generates a shell script with instructions to execute, copies it to the remote system,
and executes it. An example request and resulting script can be seen in Listings 6 and 7.

1 # ! bin/bash
2

3 cd /home/ s p a r c i t y /eu
4 l ikwid −pin S0 :0 −3 ,22 −25@S1 :0 −3 ,22 −25 ./ mkl spmv mixtank old . mtx

Listing 6: Bash script generated to execute kernel at desired path alongside
with affinity.
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1 def observat ion sampling ( SuperTwin ) :
2 c o n f i g l i n e s = g e t l i n e s ( SuperTwin . db addr ,
3 SuperTwin . db name ,
4 SuperTwin . hw events )
5 c o n f i g f i l e = g e n e r a t e c o n f i g u r a t i o n ( c o n f i g l i n e s )
6 re turn c o n f i g f i l e
7

8 def s t a r t s a m p l i n g ( c o n f i g f i l e ) :
9 e x e c u t e l o c a l ( pcp2 influxdb −c c o n f i g f i l e )

10 re turn process
11

12 def observat ion ( SuperTwin , path , command, input , threads ) :
13

14 c o n f i g f i l e = observat ion sampling ( SuperTwin )
15 a f f i n i t y = generate binding ( threads , ”numa compact” )
16 b a s h f i l e = g e n e r a t e b a s h f i l e ( path , command, input , a f f i n i t y )
17

18 copy to remote ( b a s h f i l e )
19 sampler = s t a r t s a m p l i n g
20 execute remote ( ”bash /tmp/ s t f i l e s /gen bash . sh” )
21 sampler . k i l l ( )

Listing 7: Pseudocode for executing observation at remote host with sampling
using SuperTwin.

SuperTwin allows the profiling of any command executed on the system; this property also
allows new frameworks to be easily integrated into the SuperTwin via compiled executables.
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Grafana Panel Perf configuration

Twin Description

Figure 77 A summarized version of SuperTwin dashboard generation pipeline. STD is generated with all
components having their metrics, and their metrics representation in different frameworks as content. Structured
queries then capture these values, create configuration files and run tools.
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Figure 78 Generated Monitor dashboard for host Dolap. In the socket panels, threads sharing the same
L1 cache are plotted consecutively, leveraging STD. At the time of the screenshot, a computation that is just
launched in NUMA socket 0 but anomalously allocates memory from NUMA socket 1.

5.5 generation of dashboards

SuperTwin can generate several types of dashboards on the fly after the STD is generated. Su-
perTwin’s dashboard module exploits the fact that Grafana dashboards are serialized JSON files
and easily generate Grafana queries, using parameters stored in STD interfaces. Generated dash-
boards are later uploaded to the local Grafana server and their addresses are encoded in the
corresponding interface entry in STD. A brief example of JSON generation using STD can be seen
in Listing 77.

Since the metadata and benchmark results are stored in STD, and the generation of per-
formance models, dashboard panels, and dashboards are functions of SuperTwin, generated
performance models and charts can be recalled at any time after the STD is created, any new
observation is ready for cross-comparison as long as they have mutual metrics with previous
observations.

5.6 benchmarks

On top of CARM, widely used benchmarks STREAM and HPCG are also copied to the target
system using architecture optimizations and the most recent versions. These benchmarks’ make-
files are configured w.r.t. available maximum vector extension capabilities in the target system
and compiled in place in order to ensure system performance is ideally measured. While taking
measurements, the probed system topology is also taken into account and used in the generation
of tailored scripts for different multi-threading and NUMA affinity settings. Benchmarks are
counted as a part of probing but at the same time interpreted just as any other observations.
Therefore monitoring metrics and observation metrics are also sampled during the execution of
benchmarks and made available for future comparisons. Benchmarks are encoded in STD with
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Figure 79 Performance model dashboard generated by SuperTwin showing CARM model generated for threads
that are multiples of two plus cores per socket, threads per socket, and total threads, along with STREAM and
HPCG multicore scaling and architecture information. This information is also readily available and comparable
to any other observation made by SuperTwin. Inconsistent results in STREAM and HPCG benchmarks are due
to uncompleted feature of NUMA pinning for benchmarks.

Figure 80 Comparison dashboard generated with SuperTwin. After the execution of several distinct events at
distinct times, metric timestamps are overlapped and presented to reveal common program phases in different
settings. Augmented statistics are also provided alongside time-series data. In this example, linked data is used
to make information from different events on the same host available to each other.

SparCity 75



Figure 81 Comparison dashboard generated with SuperTwin. After the execution of several distinct events
at distinct times, and on different systems, metric timestamps are overlapped and presented to reveal common
program phases in different settings. In this example, linked data is used to make information from different
events on different hosts available to each other, as shown in Figure 75

dedicated Benchmark and Benchmark Result models to facilitate semantic queries. Benchmark
entries for STD can be seen in Table9. An example encoding of a STREAM benchmark result with
different multi-threading settings can be seen in Listing 8.
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1 {
2 {dtmi:dt:dolap:system:S1;1:
3 {@type: "Interface",

4 @id: "dtmi:dt:dolap:system:S1;1"

5 @contents:

6 [{@id: "dtmi:dt:dolap:benchmark:B1;1"

7 @type: "benchmark",

8 @name: "STREAM",

9 @contents:

10 [{@id: "dtmi:dt:dolap:benchmark_res:B1;1",

11 @type: "benchmark result",

12 @field: "triad"

13 @threads: 1,

14 @modifier: "likwid -pin -c 0",

15 @result: 12816.9,

16 @unit: "MB/s"},
17 {@id: "dtmi:dt:dolap:benchmark_res:B2;1",

18 @type: "benchmark result",

19 @field: "triad"

20 @threads: 2,

21 @modifier: "likwid -pin -c 0-1",

22 @result: 25071.5,

23 @unit: "MB/s"}]
24 }]
25 }
26 }
27 }

Listing 8: Benchmark results encoded in twin description

5.7 evaluation of supertwin readings via performance

co-pilot

SuperTwin aims to present and monitor every software and hardware component, with statistics
of the past executions on a target system. It creates linked data, performs semantic queries,
and generates live and historical dashboards and analyses. However, measurements need to
be performed for all of the former to be meaningful, accurate, and lightweight. Measuring
the performance of a system creates extra work to perform the measurement, affecting the
correctness of measurements or, worse, decreasing the performance of the measuring system
and/or execution. Due to this, a measurement on a target system should be as lightweight as
possible and made sure not to affect the measured events.

SuperTwin performs performance measurements on target systems via Performance Co-Pilot
which is developed by RedHat. To prove Performance Co-Pilot’s suitability to SuperTwin use
cases, an in-depth analysis of Performance Co-Pilot’s performance, correctness, and effect on the
target system, using SuperTwin configurations, is performed. To provide a complete picture of
SuperTwin scenarios, a comprehensive analysis including system resource usage, remote report
efficiency, the maximum resolution of monitor/performance events, correctness, and overhead of
the Observation events are studied.
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Dolap Deren

OS Ubuntu 20.04.3 LTS x86 64 OS Ubuntu 22.04.1 LTS x86 64

Kernel 5.4.0-135-generic Kernel 5.15.0-47-generic
CPU Intel Xeon Gold 6152 @3.7GHz x2 (44c/88t) CPU Intel i7-9700F @4.7GHz (8c/8t)
MSR skx MSR skl
Mem. 1TB DDR4 @ 2666MHz Mem. 64GB DDR4 @ 2133MHz
Env. pcp 5.3.7-1 Env. pcp 5.3.6-1

Poseidon Luna

OS Ubuntu 20.04.4 LTS x86 64 OS Ubuntu 18.04.6 LTS x86 64

Kernel 5.15.0-56-generic Kernel 5.4.0-135-generic
CPU Intel i9-11900K @5.1GHz (8c/16t) CPU Intel Xeon E5-1650 v2 @3.9GHz (6c/12t)
MSR icl MSR ivb ep
Mem. 16GB DDR4 @2666MHz Mem. 16GB DDR3 @1866MHz
Env. pcp 6.0.1-1 Env. pcp 4.0.1-1

Table 10 System specifications of hosts used in experiments.

To provide a wider depiction, increase the confidence interval for the results, and assure the
previously mentioned flexibility of SuperTwin, a test set including reasonably different systems,
all different in capabilities with different MSRs, is used. Dolap is a recent and remarkably pow-
erful high end server with 2 CPUs, 88 threads and 1TB of RAM. Poseidon is a performant and
recent server, Deren is an upper-middle tier desktop for general use which have the desktop ver-
sion of Dolap MSR. Luna is a 10-year-old and fairly weak machine included in a test set to analyze
consistency in extreme cases. The specifications of the host machines used are summarized in
Table 10.

5.7.1 resource use of sampling

Since PCP employs several agents who collectively perform metric shipment operations, resource
usage on the remote system may become overwhelming with the increasing number of sampled
metrics and resolutions. To this end, CPU and memory usage of individual PCP agents that
are used by SuperTwin are measured for the different number of sampled metrics and sampling
frequencies. Measurements are performed for 10 minutes while the target systems are empty,
and results are averaged. Results for sampling 50 metrics with varying frequencies are given in
Figures 82, 83, 84, and 85 for Dolap, Deren, Poseidon, and Luna, respectively. The network is
monitored as a whole for each system. I/O use of PCP agents was found to be negligible (<1 KB).
Therefore, they are not included in the results. During the measurements, the host system had a
100 Mbit cabled connection with each system. The host system’s disk performance was measured
at 182 KB/s, and 1.2 MB/s for 512B and 8K block-sized writes, respectively.

For recall, from PCP agents, pmcd manages other agents and reports their readings to remote
requesters. perfevent samples PMU readings via Linux perf interface, pmdalinux reports soft-
ware sourced system state metrics such as CPU load, pmdaproc reports per process metrics, such
as io and memory usage for each process on the system. Measurements for CPU usage are made
using proc.psinfo.utime and proc.psinfo.stime metrics, for memory proc.psinfo.rss met-
ric. The first observation that can be made instantly is, apart from the number of reported metrics
or frequency of sampling, all agents are found to use a constant amount of memory. Higher
memory usage of pmdaproc is due to the size of a much bigger instance domain. Other higher
usages of system resources in Dolap, albeit having much more powerful component composition,
is also due to much bigger instance domains in Dolap. For example, a pmdaperfevent metric
has 8 instances in Deren while the same metric has 88 instances on Dolap. Similarly, a much
higher number of running processes and system components results in higher system resource
uses for Dolap. Apart from pmdaproc, all agents are found to be thrifty in system usage resources.
These measurements were made without filtering on instance domains; instance domains can be
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filtered to reduce thousands of instances to a couple of instances of interest. Also, the monitoring
framework of SuperTwin uses no per-process metrics and uses ≈20 pmdalinux metrics and ≈2

pmdaperfevent metrics at 1 second intervals without user configuration.
An interesting observation is that even though Dolap has more processes (therefore instances

in pmdaproc instance domain) than other baseline systems, pmdaproc uses slightly lower memory
w.r.t. Poseidon and Deren and the memory consumption is similar to that of Luna. This can be
due to both servers bearing Xeon CPUs, but it requires further investigation.

5.7.2 throughput and integrity of reported metrics

PCP agents and network usage are scaled almost linearly for increased sampling frequency. They
use resources consistently, as almost no deviation was observed during measurements, as seen
in the error bars. This proper scaling also exists with metrics. Every system in the experiment
set, except for Luna, scales proportionally when the number of collected data points is increased.
On Luna, the reason for poor scalability is most probably due to a constant overhead for running
the framework, since there is not much reporting loss, which will be explained later. However,
one case in the test set hints that the PCP framework does not scale perfectly. In Figure 82,
there is almost no difference in 4 and 8 reports per second, and the network traffic varies during
measurement contrary to the rest of the entire test set. This behavior is also observed in other
Dolap measurements with the exception of 10 metrics.

Figure 82 System resource usage of metric shipment with kernel and PMU metrics on Dolap. Metric agents
pmdaperfevent, pmdalinux, and pmdaproc report 24, 20, 6 metrics and 2112, 285, 13572 data points,
respectively.
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Figure 83 System resource usage of metric shipment with both kernel and PMU metrics on Deren. Metric
agents pmdaperfevent, pmdalinux and pmdaproc report 24, 20, 6 metrics and 192, 40, 2325 data points,
respectively.

Figure 84 System resource usage of metric shipment with both kernel and PMU metrics on Poseidon. Metric
agents pmdaperfevent, pmdalinux, and pmdaproc report 24, 20, 6 metrics and 384, 60, and 2805 data points,
respectively.
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Figure 85 System resource usage of metric shipment with both kernel and PMU metrics on Luna. Metric
agents pmdaperfevent, pmdalinux, and pmdaproc report 24, 20, 6 metrics and 288, 52, 2205 data points,
respectively.

The under-utilization of the network, together with the non-linear increases in CPU usage,
suggests that the framework is stalled and either struggles to sample or reports the performance
metrics with the desired frequency. This is possible since communication is over the network, and
there is no mechanism to buffer and resend missing metrics once more. Due to high frequency, at
the time of re-sending, missing metrics are outdated by hundreds or thousands of new reports.

To further investigate this situation, we performed high-frequency readings and measured the
actually reported data points and the ratio of loss with procpmda and perfeventpmda. On top of
the missing values, we observed batched zero values in our database with very high frequencies
of samplings. Since procpmda reports for all processes, and there will be many correct zero
values, we measured the wrong zero values with pmdaperfevent. With perfevent, we sampled
metrics that are highly unlikely to report zero; UNHALTED CORE CYCLES, INSTRUCTION RETIRED,
UOPS DISPATCHED etc. Then, we count the number of zeros in the database after the measurement
is completed.

Table 11 reports throughput of procpmda. On Dolap, there are ≈1100 processes running while
the server is empty; therefore, pmdaproc has ≈1100 instances per metric. On Deren, there are
≈400 processes running while the server is empty. On Dolap, a loss jump was observed after
8 reports per second when the number of individual data points exceeds 30K per second, and
another considerable jump is observed with 16 reports per second. After this point, despite slight
increases with increasing demand, losses also increased, and reported individual data points
remained between 30K and 40K data points per second. On Deren, losses exhibited a similar
jump after 30K data points with 16 reports per second. Although 48K data points per second are
achieved, with increasing frequency, losses are also increased, and maximum throughput remains
around ≈40K data points. It is concluded that losses are affected by both the frequency and
number of instances and reports that include fewer data points are slightly less prone to losses.
The maximum throughput of procpmda is around 30K-40K data points per second, despite being
subject to small changes w.r.t. host and number of instances.

The throughput achieved with pmdaperfevent can be seen in Table 12. Instead of sampling
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Figure 86 Accuracy (y-axis) in terms of relative error of 4 different events counted and compared against
values reported by likwid-bench kernels triad, stream, sum, peakflops, ddot, daxpy on 4 different
systems. Calculated individual errors are further averaged into a single value. The x-axis shows the sampled
values per second.
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Host Frequency # of metrics Expected Inserted % Loss Throughput

4 8.56E+04 8.45E+04 1.3 8447.8
5 1.07E+05 1.06E+05 1.0 10592.62

6 1.29E+05 1.28E+05 0.8 12802.3

4 1.72E+05 1.68E+05 2.4 16793.7
5 2.13E+05 2.09E+05 2.3 20860.34

6 2.57E+05 2.50E+05 2.5 25040.7

4 3.49E+05 3.05E+05 12.5 30536.0
5 4.22E+05 3.61E+05 14.5 36084.88

6 5.16E+05 3.79E+05 26.5 37909.5

4 6.92E+05 3.19E+05 53.9 31917.6
5 8.45E+05 3.38E+05 60.0 33787.516

6 1.03E+06 3.85E+05 62.8 38466.1

4 1.37E+06 3.14E+05 77.2 31368.6
5 1.69E+06 3.63E+05 78.5 36321.732

6 2.07E+06 3.90E+05 81.2 38962.9

4 2.72E+06 3.01E+05 88.9 30109.7
5 3.38E+06 3.62E+05 89.3 36213.2

Dolap

64

6 4.11E+06 3.78E+05 90.8 37783.2

Host Frequency # of metrics Expected Inserted % Loss Throughput

4 3.16E+04 3.14E+04 0.4 3144.2
5 3.99E+04 3.97E+04 0.4 3974.02

6 4.76E+04 4.76E+04 0.0 4761.6

4 6.32E+04 6.21E+04 1.7 6209.4
5 7.98E+04 7.91E+04 0.9 7914.54

6 9.54E+04 9.27E+04 2.8 9274.9

4 1.26E+05 1.24E+05 2.3 12352.2
5 1.60E+05 1.57E+05 2.0 15672.28

6 1.91E+05 1.88E+05 1.5 18829.7

4 2.54E+05 2.49E+05 2.0 24871.5
5 3.18E+05 3.11E+05 2.1 31147.716

6 3.82E+05 3.14E+05 18.0 31364.0

4 5.08E+05 4.18E+05 17.6 41844.4
5 6.35E+05 4.81E+05 24.3 48116.432

6 7.64E+05 4.56E+05 40.4 45579.0

4 1.02E+06 3.95E+05 61.1 39483.4
5 1.26E+06 4.07E+05 67.7 40738.7

Deren

64

6 1.53E+06 3.84E+05 74.9 38367.2

Table 11 Number of data points expected and observed at the host database w.r.t. the number of metrics and
sampling frequency. Throughput is inserted datapoints per second.
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and reporting of operating system files, pmdaperfevent samples PMUs, another bottleneck for
maximum throughput. Therefore, we expect a lower value than pmdaproc. Similar to pmdaproc,
with 16 reports per second, a massive jump in losses is observed with both systems, with the
contribution of false zeros. Furthermore, the loss amount is correlated with the size of the instance
domain. While being much more significant in Dolap, an increase in batch zeros and losses with
correspondence with pmdaproc are observed. This further strengthens the previous conclusion
that larger numbers of instances both in reports and high frequency are effective in losses.

Host Freq. metrics Expected Inserted Zeros % Loss % L+Zeros Throughput A. Throughput

4 7.04E+03 6.62E+03 0.00E+00 6.0 6.0 661.8 661.8
5 8.80E+03 8.71E+03 0.00E+00 1.0 1.0 871.2 871.22

6 1.06E+04 1.06E+04 0.00E+00 0.0 0.0 1056.0 1056.0

4 1.41E+04 1.31E+04 2.22E+02 7.0 8.6 1309.4 1287.2
5 1.76E+04 1.76E+04 0.00E+00 0.0 0.0 1760.0 1760.04

6 2.11E+04 2.05E+04 0.00E+00 3.0 3.0 2048.6 2048.6

4 2.82E+04 2.60E+04 5.84E+02 7.8 9.8 2597.8 2539.4
5 3.52E+04 3.42E+04 7.72E+01 2.8 3.0 3423.2 3415.58

6 4.22E+04 4.22E+04 0.00E+00 0.0 0.0 4224.0 4224.0

4 5.63E+04 4.49E+04 1.34E+04 20.3 44.0 4491.5 3151.5
5 7.04E+04 6.88E+04 1.73E+04 2.3 26.8 6881.6 5155.016

6 8.45E+04 8.25E+04 2.00E+04 2.4 26.0 8247.4 6248.5

4 1.13E+05 6.97E+04 3.04E+04 38.1 65.1 6969.6 3927.9
5 1.41E+05 1.14E+05 5.32E+04 19.4 57.2 11352.0 6030.332

6 1.69E+05 1.20E+05 5.02E+04 28.8 58.5 12027.8 7012.1

4 2.25E+05 3.57E+04 1.61E+04 84.2 91.3 3569.3 1962.6
5 2.82E+05 1.14E+05 5.32E+04 59.6 78.5 11387.2 6063.7

Dolap

64

6 3.38E+05 1.31E+05 5.91E+04 61.3 78.8 13073.3 7163.6

Host Freq. metrics Expected Inserted Zeros % Loss % L+Zeros Throughput A. Throughput

4 6.40E+02 6.40E+02 0.00E+00 0.0 0.0 64.0 64.0
5 8.00E+02 8.00E+02 0.00E+00 0.0 0.0 80.0 80.02

6 9.60E+02 9.60E+02 0.00E+00 0.0 0.0 96.0 96.0

4 1.28E+03 1.24E+03 0.00E+00 3.0 3.0 124.2 124.2
5 1.60E+03 1.53E+03 0.00E+00 4.5 4.5 152.8 152.84

6 1.92E+03 1.83E+03 0.00E+00 4.5 4.5 183.4 183.4

4 2.56E+03 2.49E+03 0.00E+00 2.8 2.8 249.0 249.0
5 3.20E+03 3.10E+03 1.60E+00 3.0 3.1 310.4 310.28

6 3.84E+03 3.72E+03 0.00E+00 3.0 3.0 372.5 372.5

4 5.12E+03 5.00E+03 4.61E+02 2.3 11.3 500.5 454.4
5 6.40E+03 6.40E+03 5.27E+02 0.0 8.2 640.0 587.316

6 7.68E+03 7.48E+03 5.89E+02 2.6 10.3 747.8 689.0

4 1.02E+04 9.67E+03 3.69E+03 5.6 41.6 967.0 597.8
5 1.28E+04 1.25E+04 4.67E+03 2.6 39.1 1246.4 779.932

6 1.54E+04 1.49E+04 5.50E+03 2.9 38.7 1490.9 940.8

4 2.05E+04 1.99E+04 1.05E+04 2.8 54.3 1991.0 936.2
5 2.56E+04 2.19E+04 1.09E+04 14.4 57.2 2190.4 1095.6

Deren

64

6 3.07E+04 2.70E+04 1.36E+04 12.2 56.4 2696.6 1338.1

Table 12 Number of data points expected and observed at the host database w.r.t. the number of metrics
and sampling frequency. Throughput is inserted data points per second. L%+Zeros is the ratio of false zeros
subtracted from inserted values to the expected value. A.throughput is the number of correct data points inserted
to the database per second.
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5.7.3 accuracy of hardware performance counter sampling

To measure the accuracy of hardware performance counting, we employed likwid-bench micro-
benchmark, which executes the generated assembly code with adjustable size and time and
reports performance events that have correspondence with hardware performance counters. From
the reported values of likwid-bench, Cycles is calculated with UNHALTED REFERENCE CYCLES, the
number of FLOPs is calculated with FP ARITH:SCALAR DOUBLE on Dolap, Deren and Poseidon and
FP COMP OPS EXE:X87 on Luna.35

Data volume is calculated as MEM UOPS RETIRED:ALL LOADS+MEM UOPS RETIRED:ALL STORES

on Dolap, Deren and Luna, and MEM INST RETIRED:ALL LOADS+MEM INST RETIRED:ALL STORES

on Poseidon. The number of total instructions is calculated as INSTRUCTION RETIRED on all
hosts. UOPs is calculated with UOPS RETIRED SLOTS on all hosts except on Poseidon calculated
with UOPS RETIRED SLOTS. Finally, AI is then calculated total FLOPs/total bytes for corresponding
metrics. Micro-benchmark kernels triad, sum, stream, peakflops, ddot and daxpy executed on
all hosts with varying frequencies and additional metrics other than previously mentioned in
order to provide a deep analysis of accuracy. To focus on the L1 bandwidth on memory operations,
kernels are executed with 100KB size, which completely fits in the cache on all hosts.

To present the setting with the highest accuracy, averaged relative errors for all kernels are
examined and presented in Figure 86. It’s found that Luna performs slightly worse than other
hosts in terms of accuracy for all metrics, except for UNHALTED REFERENCE CYCLES. This is due
to the fact that benchmarks are performed without fixing core frequency, and Deren, which is
a much newer architecture, had much more fluctuations. However, results are presented this
way due to still having a low error with varying core frequency, which is much more realistic for
any other daily scenario. Moreover, Luna is found to be unable to report correct floating point
operations. Luna’s floating point operation reports seem to be unaffected by the executed kernels
and always have ≈ 100% error. Nevertheless, since Luna is older than the other baseline, this
error level is acceptable and a deeper analysis is not performed.

It’s found that on every host frequency rating, 1/8 achieved the best accuracy. This is on par
with findings from throughput, and higher errors coming with higher frequencies are thought
to be a result of losses in reported data points. However, to show best and worst case scenarios
and to show the impact of losses in high-frequency reporting, cases yielding the best and worst
accuracy broken down to kernels are presented in Table 13 and 14 respectively. It’s found that, as
mentioned in,36 architectures differ in accuracy for different events. While Poseidon chronically
has the highest error with UOPs event in Table 13, it exhibits the lowest error in the floating point
event. Among other hosts, Dolap and Deren are found to perform consistently with high accuracy,
while Luna is found to have acceptable errors on all events other than the floating point. It’s also
found that the accuracy of measurements can be affected by the type of kernel, as in the case
of peakflops UOPs. Poseidon achieves a thousand times less error than other kernels. Besides,
Dolap and Luna also achieve the lowest error for UOPs. That may imply that PMUs are more
accurate when counting the same type of events for a given metric. Another important finding
is that, even with the worst-case accuracy, the calculated AI values are accurate enough to build
roofline models. Still, the losses in sampling increased all errors of all hosts 4 to 10 times.

35Vincent Weaver, Dan Terpstra, and Shirley Moore. “Non-determinism and overcount on modern hardware
performance counter implementations”. 2013, pp. 215–224. doi: 10.1109/ISPASS.2013.6557172.

36Ibid.

SparCity 85

https://doi.org/10.1109/ISPASS.2013.6557172


Dolap fp cycle inst uops bw ai ai real

triad 1.01E-03 1.18E-02 8.65E-04 1.33E-03 1.35E-03 0.0625 0.0625

sum 1.16E-03 1.10E-02 1.50E-03 1.70E-03 1.80E-03 0.1249 0.1250

stream 2.32E-03 1.17E-02 1.15E-03 1.43E-03 2.26E-03 0.0833 0.0833

peakflops 1.61E-03 1.17E-02 4.27E-04 4.30E-05 4.87E-03 1.9935 2.0000

ddot 1.06E-04 1.08E-02 4.09E-04 2.66E-04 6.29E-04 0.1249 0.1250

daxpy 2.07E-03 1.16E-02 8.89E-04 1.74E-03 1.68E-03 0.0834 0.0833

Deren fp cycle inst uops bw ai ai real

triad 5.80E-05 2.57E-02 2.65E-03 2.27E-03 1.80E-03 0.0624 0.0625

sum 5.63E-04 2.45E-02 4.05E-03 4.45E-03 3.90E-03 0.1246 0.1250

stream 1.76E-03 2.61E-02 3.59E-04 8.56E-04 5.79E-04 0.0831 0.0833

peakflops 8.28E-04 2.44E-02 6.15E-04 1.25E-03 4.45E-03 1.9896 2.0000

ddot 1.15E-03 2.57E-02 3.03E-03 2.85E-03 2.46E-03 0.1248 0.1250

daxpy 5.54E-04 2.48E-02 8.27E-04 2.70E-03 1.50E-03 0.0832 0.0833

Poseidon fp cycle inst uops bw ai ai real

triad 1.18E-03 2.00E-03 1.08E-03 3.99E-01 1.19E-03 0.0624 0.0625

sum 9.91E-04 1.81E-03 1.20E-03 4.43E-01 1.18E-03 0.1247 0.1250

stream 1.89E-04 1.48E-03 1.55E-03 3.06E-01 2.31E-03 0.0831 0.0833

peakflops 4.41E-04 1.69E-03 1.52E-04 9.53E-04 2.48E-03 1.9942 2.0000

ddot 9.85E-04 2.10E-03 4.73E-04 2.21E-01 1.31E-03 0.1247 0.1250

daxpy 9.40E-04 2.21E-03 1.74E-04 3.07E-01 1.97E-04 0.0832 0.0833

Luna fp cycle inst uops bw ai ai real

triad 1.00E+00 2.30E-02 1.53E-02 1.67E-02 1.93E-02 0.0000 0.0625

sum 1.00E+00 1.99E-02 1.56E-02 1.47E-02 1.53E-02 0.0000 0.1250

stream 1.00E+00 3.02E-02 2.80E-02 2.59E-02 2.78E-02 0.0000 0.0833

peakflops 1.00E+00 1.73E-02 1.46E-02 1.43E-02 9.14E-03 0.0000 2.0000

ddot 1.00E+00 2.34E-02 2.88E-02 2.86E-02 2.94E-02 0.0000 0.1250

daxpy 1.00E+00 2.25E-02 1.79E-02 1.69E-02 1.80E-02 0.0000 0.0833

Table 13 Best case scenarios observed for the experiments summarized in Figure 86. Likwid-bench kernels are
sampled with 8 metrics with frequency 8/s, executed 10 times, and average values are reported.
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Dolap fp cycle inst uops bw ai ai real

triad 2.05E-02 7.55E-02 3.81E-02 1.29E-01 2.62E-02 0.0628 0.625

sum 2.01E-02 7.98E-02 4.35E-02 1.31E-01 3.26E-02 0.1266 0.125

stream 2.28E-02 7.81E-02 4.93E-02 1.31E-01 3.68E-02 0.0845 0.0833

peakflops 1.93E-02 7.98E-02 4.29E-02 1.33E-01 2.39E-02 2.0094 2.000

ddot 2.21E-02 7.20E-02 4.19E-02 1.34E-01 3.03E-02 0.1260 0.125

daxpy 2.01E-02 7.90E-02 4.31E-02 1.33E-01 2.97E-02 0.0841 0.0833

Deren fp cycle inst uops bw ai ai real

triad 5.55E-03 5.57E-02 4.08E-02 2.48E-03 2.09E-03 0.0620 0.625

sum 5.54E-03 5.51E-02 4.04E-02 2.75E-03 1.53E-03 0.1241 0.125

stream 3.94E-03 5.74E-02 4.26E-02 6.32E-03 5.58E-03 0.0825 0.0833

peakflops 5.60E-03 5.40E-02 3.84E-02 6.97E-04 4.76E-03 1.9795 2.000

ddot 8.13E-03 5.33E-02 3.79E-02 9.21E-04 1.85E-03 0.1242 0.125

daxpy 4.91E-03 5.89E-02 4.19E-02 6.85E-04 2.86E-03 0.0826 0.0833

Poseidon fp cycle inst uops bw ai ai real

triad 8.23E-03 8.74E-02 3.95E-02 4.02E-01 3.34E-03 0.0618 0.625

sum 7.28E-03 8.17E-02 3.40E-02 4.47E-01 5.48E-03 0.1247 0.125

stream 5.08E-03 8.52E-02 4.02E-02 3.10E-01 3.10E-05 0.0829 0.0833

peakflops 5.98E-03 9.07E-02 4.37E-02 5.91E-03 1.63E-02 1.9570 2.000

ddot 6.45E-03 8.13E-02 3.57E-02 2.25E-01 1.44E-03 0.124 0.125

daxpy 7.02E-03 7.97E-02 3.58E-02 3.11E-01 8.42E-03 0.0834 0.0833

Luna fp cycle inst uops bw ai ai real

triad 1.00E+00 1.35E-01 9.51E-02 5.57E-02 3.00E-02 0.0000 0.625

sum 1.00E+00 1.36E-01 8.68E-02 3.43E-02 3.11E-02 0.0000 0.125

stream 1.00E+00 1.24E-01 7.87E-02 2.71E-02 3.03E-02 0.0000 0.0833

peakflops 1.00E+00 1.30E-01 8.35E-02 3.93E-02 3.10E-02 0.0000 2.000

ddot 1.00E+00 1.16E-01 2.97E-02 1.40E-02 8.58E-02 0.0000 0.125

daxpy 1.00E+00 1.56E-01 9.14E-02 3.84E-02 2.19E-02 0.0000 0.0833

Table 14 Worst case scenarios observed for the experiments in Figure 86. Likwid-bench kernels are sampled
with 24 metrics with frequency 16/s, executed 10 times and average values are reported.
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Figure 87 Overhead of PMU sampling on 4 systems using PCP via SuperTwin. Values represent likwid-
bench kernels triad, stream, sum, peak flops, ddot, daxpy executed 10 times each and averaged
together with 1, 8, and 24 metrics sampled. Comparison is against the baseline in which no sampling takes
place.

5.7.4 overhead of measurements

To measure the overhead of the PMU profiling, likwid-bench kernels are executed for 10 times.
The runtimes without profiling and with a different number of metrics are reported for different
sampling frequencies in Figure 87. The only system that consistently experiences overhead from
PMU sampling is found to be Luna. This is understandable since Luna is an old architecture
and has poor performance. Apart from Luna, negative overheads are observed which means
the overhead added by sampling is smaller than the natural variance observed between different
runs of the same kernel. A similar negative overhead is also reported in,37 even in a much bigger
distributed setting. However, a meaningful skew towards positive overhead is observed with
increasing frequency. That hints that, in previously presented integrity results, PCP did not just
skip samplings for high frequencies. It tries to sample events; however, it could not catch up with
high frequency. Still, the overhead is very low, and negative overheads are present with runs
where the frequency is 16/sec.

5.8 summary of activities

Since the start of the development of SuperTwin, digital twin and linked time-series data ap-
proaches are proven to be worthy of attention since, their previous motivations on knowledge
management, automated modeling, visualization, and comparison are adapted, implemented,
and shown to function in a lightweight and accurate way for creating digital twins of supercom-
puters. With the added augmentation and semantical query abilities, they allow for automatically

37Andrzej Nowak and Georgios Bitzes. The overhead of profiling using PMU hardware counters. 2014. doi: 10.5281/
zenodo.10800. url: https://doi.org/10.5281/zenodo.10800.
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generated interlinked dashboards for every individual component for a target system and the
proposed data structure is promising to be scaled to much larger systems. SuperTwin also stays
promising for straightforward integration of external tools since the integrations of several bench-
marks such as CARM, STREAM, and HPCG into SuperTwin are done with the same approach
without giving up the homogeneity of the framework. Moreover, alongside the capabilities bench-
marks added to the SuperTwin, SuperTwin also added capabilities to those benchmarks. For
example, while CARM adds SuperTwin’s ability to generate performance models, SuperTwin
adds cache-aware roofline model ability of an automated generation of performance models for
different threading settings and concerning NUMA domains, alongside with the capability to
mark executed kernels on generated rooflines on-the-fly. Although automated reports of the
effect of thread affinities on benchmarks are under development, it is shown that benchmarks
can be tailored concerning metadata probed from the system and executed automatically with
digital twins. This property also enables those results to be used as baselines for later measure-
ments. Another important point is that the measurements of memory bandwidth, floating point
operations, and metrics acquired by combining them are accurate enough to observe real-time
deviations from performance models and generate application-specific performance models. This
is now considered as a future work since SuperTwin already provides the required metadata.
Moreover, the ability to automatically and quickly make a high volume of observations with
minimal configuration and compare them, although yet to be realized, will prove worthy of
architecture research and algorithm research.
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6 conclusions

Deliverable 1.4 focused on presenting performance and energy models and communication/pro-
filing tools targeting sparse computation workloads on modern microarchitectures and systems.
Sparse computing is at the core of several key applications with significant societal and/or eco-
nomic impact, either in the form of sparse matrix multiplication or in the form of sparse tensor
contractions involving arbitrary dimensional tensors with different levels of sparsity. Modern
computing platforms are designed as a means to address the ever rising escalation in regard to
the performance and energy-efficiency needs of these and other workloads. However, many of
the contemporary microarchitectures and devices on modern computing platforms are yet to be
fully exploited for performing sparse computations. Hence the importance of high performing
and accurate models, profiling tools and digital replication software that allow us to predict the
behavior of today’s emerging systems and make better informed decisions when tasked with de-
veloping high-performance and energy-efficient methods for processing different representations
of sparse data in the context of different computational problems.

We demonstrated the utilization of sparse-aware CARM, a novel modeling approach that
strives to accurately characterize sparse computations and assesses the ability to make efficient
use of a targeted microarchitecture. We provide detail explanations for the proposed model in
regard to its interoperability, revealing its complete construction and interpretation methodology.
In-depth validation and characterization relying on Sparse-aware CARM has been performed
for a hand-tuned assembly SpMV kernel on an Intel x86 multi-core CPU using sparse matrices
with synthetic and real-word data. Through the visualization of effects on cache locality and
load balancing, we evaluated the ability of a set of matrix reordering schemes to improve the
utilization of computational resources considering both single- and multi-threaded execution.
Furthermore, for a range of kernel AIs and a range of CPU core frequencies, a novel method
for roofline-based evaluation has been used, which can guide the optimization of applications in
regard to performance, power consumption and/or energy efficiency. Relying on the previously
referred approach for assembly implementation of SpMV, a performance analysis targeting a
RISC-V microarchitecture has been performed, which recently emerged as a promising solution
to the next generation energy-efficient computing platforms. A range of AIs has been analyzed in
regard to the resulting effect on utilization of caches. The use of CARM evidenced the profound
impact that certain aspects of RISC-V microprocessor architectures have on performance of SpMV,
identifying bottlenecks, and as a result, opportunities for the design space exploration of RISC-V
microprocessors in a direction of domain-specific architectures for efficient processing of sparse
data.

In pair with SpMV operations, SpMM represents arguably one of the most popular types of
operations over sparse data. A set of SpMM implementations targeting GPU devices have been
explored on a modern GPU microarchitecture (NVIDIA Ampere). Making use of DVFS, a study
cross-comparing different SpMM approaches has been performed for identifying the effects of
selecting optimal combinations of GPU memory and core frequencies on performance, power
consumption, energy-efficiency and resulting energy consumption. Both SpMM approaches
relying on the general purpose cores on the GPU (CUDA cores) and specialized cores (dense and
sparse tensor cores) have been considered. In comparison to the use of GEMM, the study clearly
demonstrated that the processing of some sparse matrices can be significantly accelerated and
more energy-efficient through the use of SpMM kernels, and that individual tuning of memory
and core frequencies to each SpMM method can significantly improve execution in regard to
these metrics. Furthermore, we also tackled computer workloads involving the use of sparse
TTM, another notable type of tensor contraction processing sparse data, consisting in performing
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the product between a multi-dimensional tensor and a matrix. A set of data-parallel TTM
methods have been developed and tested on Intel CPU and GPU microarchitectures, identifying
their upper bounds relying on CARM modeling. In order to inform the model, the AI intensity
of the different methods and their performance have been evaluated taking into account the use
of real and synthetic data.

Most of the profiling tools for CPUs target Intel microarchitectures. There is, however, an
increasing presence of other CPU microarchitectures in HPC systems, such as AMD X86 Zen
and Fujitsu ARM-based A64FX microarchitectures. This makes it important to create novel tools
and/or extend and test existing ones on these novel emerging architectures. The proposed
profiling tools for inter-thread communication and reuse distance analysis of multithreaded ap-
plications (ComDetective and ReuseTracker) have been extended to support low-overhead
profiling on modern AMD microprocessors. The tools have been evaluated in regard to their
overhead and accuracy under different scenarios, considering different sampling intervals and
debug register counts. Overall, accurate results have been achieved with a low overhead in com-
parison to other means of collecting the same runtime data. This has been made possible on AMD
CPUs due to the use of instruction-based sampling (IBS), which has been achieved by modifying
a special Linux kernel module. The ARM-based Fujitsu A64FX GPU is another example of a very
capable micro architecture that has been recently introduced to the market. This processor sup-
ports cache partitioning and mapping of program objects at runtime through a mechanism named
sector cache. Experimental evaluation with matrices from cardiac electrophysiology showed that
the use of sector cache improved performance and memory bandwidth, being the only exception
when processing a matrix that already fits completely in L2 cache. A profiling tool has been
developed to predict the improvement in regard to cache misses that one is expected to obtain
if using the sector cache on a given program. Real measurements have been performed, which
were closely matched by those predicted by the tool.

This deliverable documents the steps taken to take SuperTwin, a digital replication framework
targeting supercomputer platforms, out of the prototype stage. Relying on the description of
the target system and a large collection of integrated tools, SuperTwin can be used to accurately
model, monitor and/or observe the system in a lightweight manner. In relation to the previously
presented prototype, SuperTwin now has additional augmentation and semantical query abilities
and additional benchmarking capabilities. Automatic generation of dashboards for real-time and
per-request monitoring, as well as CARM-based modeling with integrated visualization, has also
been added to SuperTwin. The relationship between SuperTwin and the tools integrated into the
framework is a symbiotic one. For instance, in the case of CARM-based modeling, SuperTwin
gains access to generation of state-of-the-art performance models, while the tool used to perform
modeling automatically gains access the possibility of modeling for alternative configurations
of the system (threading settings, NUMA domains, etc). SuperTwin has been validated in re-
lation to throughput and integrity, varying the sampling frequency and the amount of events
reported on four different computing platforms. The measurements related to throughput of
floating-point operations and memory bandwidth have been demonstrated to be precise enough
to instantaneously identify deviations from performance models.
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