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1 introduction

The SparCity project is funded by EuroHPC JU (the European High Performance Computing
Joint Undertaking) under the 2019 call of Extreme Scale Computing and Data Driven Technologies
for research and innovation actions. SparCity aims to create a supercomputing framework
that will provide efficient algorithms and coherent tools specifically designed for maximizing
the performance and energy efficiency of sparse computations on emerging High Performance
Computing (HPC) systems, while also opening up new usage areas for sparse computations in
data analytics and deep learning.

Sparse computations are commonly found at the heart of many important applications, but
at the same time it is challenging to achieve high performance. SparCity delivers a coherent
collection of innovative algorithms and tools for enabling high efficiency of sparse computations
on emerging hardware platforms. More specifically, the objectives of the project are:

• to develop a comprehensive application and data characterization mechanism for sparse
computation based on the state-of-the-art analytical and machine-learning-based perfor-
mance and energy models,

• to develop advanced node-level static and dynamic code optimizations designed for mas-
sive and heterogeneous parallel architectures with complex memory hierarchy for sparse
computation,

• to devise topology-aware partitioning algorithms and communication optimizations to boost
the efficiency of system-level parallelism,

• to create digital SuperTwins of supercomputers to evaluate and simulate what-if hardware
scenarios,

• to demonstrate the effectiveness and usability of the SparCity framework by enhancing
the computing scale and energy efficiency of challenging real-life applications,

• to deliver a robust, well-supported and documented SparCity framework into the hands
of computational scientists, data analysts, and deep learning end-users from industry and
academia.

1.1 objectives of this deliverable

The objective of this deliverable is to document the ongoing research regarding the exploitation
of lower precision units for sparse computation and development of techniques to boost the
performance without significantly impacting accuracy of sparse solvers. The deliverable will also
discuss the design of new storage formats to leverage mixed precision, along with their pros and
cons.

1.2 work performed

The research work that has so far been carried out has focused on exploring mixed precision
implementations for one of the most frequently used sparse kernels, namely SpMV (sparse matrix
vector multiplication). We have developed a fine-grained mixed-precision SpMV, where the level
of precision is decided for each element in the matrix to be used in a single operation. We extend
an existing entry-wise precision based approach by deciding precisions per row, motivated by
the granularity of parallelism on a GPU where groups of threads process rows in CSR-based
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matrices. We propose mixed-precision CSR storage methods with row permutations and describe
their greater efficiency and load-balancing compared to the existing method. We also consider
a multi-precision case where single and double precision copies of the matrix are stored ahead
of time, and further extend our mixed-precision SpMV approach to comply with it. As such,
we leverage a mixed-precision SpMV to obtain a multi-precision Jacobi method which is faster
than yet almost as accurate as double-precision Jacobi implementation, and further evaluate a
multi-precision Cardiac modeling algorithm. We demonstrate the effectiveness of the proposed
SpMV methods on an extensive dataset of real-valued large sparse matrices from the SuiteSparse
Matrix Collection using an NVIDIA V100 GPU.

1.3 deviations and counter measures

There was no deviation from the work plan.

1.4 resources

• The source code repository for the mixed and multi-precision support for SparCity is
public and available at

https://github.com/sparcityeu/Codebase

• Most of the content in this deliverable also appears in the publication that came out from
this work:

Erhan Tezcan, Tugba Torun, Fahrican Koşar, Kamer Kaya, and Didem Unat (2022). Mixed
and Multi-Precision SpMV for GPUs with Row-wise Precision Selection. IEEE 34th Inter-
national Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD’22), November 2-5, 2022, Bordeaux, France. (Best Paper Award)
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2 mixed and multi-precision spmv

SpMV has been extensively researched with different storage formats and GPU kernel optimiza-
tions. One potential optimization is to utilize mixed-precision, combining double precision (FP64)
and single precision (FP32). This is because lower precision arithmetic is faster and more power-
efficient, with less memory and network traffic than higher precision arithmetic. Mixed-precision
SpMV can be implemented at different levels of the algorithm, such as within iterative solvers or
in compute-intensive parts of the application.1

A mixed-precision SpMV technique is to use different precisions at different levels of the algo-
rithm within SpMV. This is commonly used in iterative solvers where a less-precise inner solver
is kept at lower precision, and an outer, more-precise solver can tolerate the errors introduced,
an approach known as defect-correction.2 Lower precisions have also been utilized in compute-
intensive but error-tolerant parts of iterative solvers, such as factorization and preconditioning.3

Another approach to mixed-precision SpMV is to use different precisions at a finer granularity
within a single SpMV.4 Ahmad et al.5 use different precisions for each nonzero value of the sparse
matrix stored in CSR format and split it into separate FP32 and FP64 CSR matrices. However, their
method suffers from load-imbalance issues, resulting in slower execution times than FP64 SpMV.
In this project, row-wise precision selection is proposed to balance the workload among threads
and extend CSR and ELLPACK-R to multi-precision with slightly modified SpMV kernels.

The modified kernels are based on the open-source CUSP library6 for NVIDIA, an implemen-
tation of CSR-Vector SpMV that has been used in numerous works comparing different kernels.
Upon deciding the precision for each row, the rows are permuted such that those with the same
precision type are clustered together to address load-balancing issues.

The proposed mixed-precision SpMV is applied to a multi-precision sparse Jacobi method
and a multi-precision Cardiac modeling application7 of solving diffusion equations with finite
volumes. The main contributions of this work are the implementation of row-wise precision
selection to balance the workload among threads and the demonstration of the capability of
mixed-precision SpMV in different applications.

1Ahmad Abdelfattah et al. “A survey of numerical linear algebra methods utilizing mixed-precision arithmetic”.
Int. J. High Perf. Comp. Appl. 35.4 (2021), pp. 344–369; Jennifer A. Loe et al. “Experimental Evaluation of Multiprecision
Strategies for GMRES on GPUs”. IEEE Int. Parallel Distrib. Process. Symp. Workshops. 2021, pp. 469–478; Stephen F.
McCormick, Joseph Benzaken, and Rasmus Tamstorf. “Algebraic error analysis for mixed-precision multigrid solvers”.
ArXiv abs/2007.06614 (2020).

2Erin Carson and Nicholas J. Higham. “Accelerating the Solution of Linear Systems by Iterative Refinement in Three
Precisions”. SIAM J. Sci. Comput. 40.2 (2018), A817–A847; M.A. Clark et al. “Solving lattice QCD systems of equations
using mixed precision solvers on GPUs”. Comput. Phys. Commun. 181.9 (2010), pp. 1517–1528. issn: 0010-4655.

3Ahmad Abdelfattah, Stan Tomov, and Jack Dongarra. “Investigating the Benefit of FP16-Enabled Mixed-Precision
Solvers for Symmetric Positive Definite Matrices Using GPUs”. Comput. Sci. Springer Int. Publ., 2020, pp. 237–
250; Marc Baboulin et al. “Accelerating scientific computations with mixed precision algorithms”. Comput. Phys.
Commun. 180.12 (2009), pp. 2526–2533. issn: 0010-4655; Alfredo Buttari et al. “Using Mixed Precision for Sparse Matrix
Computations to Enhance the Performance While Achieving 64-Bit Accuracy”. ACM Trans. Math. Softw. 34.4 (2008).
issn: 0098-3500.

4Khalid Ahmad, Hari Sundar, and Mary Hall. “Data-Driven Mixed Precision Sparse Matrix Vector Multiplication
for GPUs”. ACM Trans. Archit. Code Optim. 16.4 (2019). issn: 1544-3566; Patrick Amestoy et al. “Mixed Precision Low
Rank Approximations and their Application to Block Low Rank LU Factorization”. hal-03251738v2. 2021; Rise Ooi
et al. “Effect of Mixed Precision Computing on H-Matrix Vector Multiplication in BEM Analysis”. Proc. Int. Conf. High
Perf. Comput. Asia-Pacific Region. Fukuoka, Japan: ACM, 2020, pp. 92–101.

5Ahmad, Sundar, and Hall, “Data-Driven Mixed Precision Sparse Matrix Vector Multiplication for GPUs”.
6Steven Dalton et al. Cusp: Generic Parallel Algorithms for Sparse Matrix and Graph Computations. Version 0.5.0. 2014.

url: http://cusplibrary.github.io/.
7Johannes Langguth et al. “Scalable Heterogeneous CPU-GPU Computations for Unstructured Tetrahedral Meshes”.

IEEE Micro 35.4 (2015), pp. 6–15.
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rows32 = [0,3,4,7]
cols32 = [0,2,4,2,1,3,4]
vals32 = [a,b,c,f,x,y,z]
rows64 = [0,2,5]
cols64 = [1,3,0,3,4]
vals64 = [d,e,p,q,r]
sepIdx = 3
perms  = [0,3,1,2,4]

d e
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Figure 1 Row-wise Split example

for (row=vec_id; row<num_rows; row+=num_vecs):

Fetch rows32[row] & rows32[row+1]
Calculate local sum with vals32, cols32 and x32
Fetch rows64[row-sep] & rows64[row-sep+1]
Calculate local sum with vals64, cols64 and x64

T

Reduce sums in FP64 and write to y[row]

F

if (row < sepIdx)

Figure 2 Row-wise Split kernel

2.1 row-wise split: a mixed precision method

We propose a row-level precision selection method for SpMV, namely row-wise split, which deter-
mines the precision for each row separately. A row is chosen to be in FP32 if at least p percentage
of its values are in some range (−r, r), and all of its values are within the range of FP32.

We also propose a matrix-specific range calculated for each matrix prior to computations, instead
of a fixed range. This is because although a fixed and small range would incur less absolute
error, it can cause all values to be stored in FP32 for matrices with small or scaled values. For a
given matrix with a set of nonzero values V, we set the range as r=f×(

∑
v∈V |v|)/|V| where f is a

predefined shrinking factor chosen to adjust the range such that smaller f may lead to less error
but fewer values to be stored in FP32.

After precision is decided per row, two matrices are created from the rows, one for each type
of precision. This has a row permutation effect (shown with perms in Fig.1) where the rows with
the same precision are clustered together. As shown in the kernel overview in Fig. 2, a thread
group checks the precision by comparing its row to the separation index (sepIdx), and proceeds
with the dot product at the respective precision.

The row-wise split method guarantees no empty rows, by permuting the existing empty rows
to be clustered at the bottom and ignored during SpMV. This saves redundant global accesses to
the row pointer in the presence of empty rows. It also effectively solves the load-balance problems.
As depicted in Fig. 1, row permutation ensures consecutive thread groups to have similar loads.
Moreover, a thread group’s load does not change after the split as elements of a row stay the
same.

2.2 row-wise composite : a multi-precision compliant method

Multi-precision and mixed-precision techniques are occasionally used interchangeably.8 In this
work, mixed-precision refers to the case that an operation uses multiple precisions; whereas multi-
precision means that FP64, FP32 and mixed-precision implementations may be used throughout
an application at different levels. For instance, a multi-precision GMRES method using FP32 and

8Abdelfattah et al., “A survey of numerical linear algebra methods utilizing mixed-precision arithmetic”.
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rows   = [0,3,4,7,9,12]
cols   = [0,2,4,2,1,3,4,1,3,0,3,4]
vals32 = [a,b,c,f,x,y,z,d,e,p,q,r]
vals64 = [a,b,c,f,x,y,z,d,e,p,q,r]
sepIdx = 3
perms  = [0,3,1,2,4]
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Figure 3 Row-wise Composite Split example

for (row=vec_id; row<num_rows; row+=num_vecs):

Fetch rows[row], rows[row+1]

Calculate local sum with vals32, cols and x32

Reduce sums in FP64 and write to y[row]

Calculate local sum with vals64, cols and x64

T

F

if (row < sepIdx)

Figure 4 Row-wise Composite kernel

FP64 is recently described,9 and this method requires the matrix to be stored in both precisions
at the same time. Note that the extra FP32 matrix just requires a value pointer, as the row and
column pointers are equivalent for both matrices.

Suppose one is to extend the multi-precision method by incorporating mixed-precision SpMV
in between FP32 and FP64 steps. The aforementioned methods need two different matrices
with their own row, column and value pointers, differing from those of FP64 and FP32 matrices.
Consequently, these mixed-precision splits require their own memory allocations and transfers
for a GPU-based execution in addition to the existing FP32 and FP64 matrices. This can either
mean allocating all types once at the start or transferring the data to GPU during execution, which
would greatly hinder the performance due to large amounts of data movement.

To address this issue, we propose row-wise composite to be used in multi-precision cases.
Instead of creating two matrices as done in row-wise split, here we just create an FP32 copy of the
values array of the permuted FP64 matrix. Fig. 3 and Fig. 4 show how this enables accessing the
value pointer in both precisions with the same row and column pointers. Similar to the row-wise
split kernel, the separation index (sepIdx) is used to find the precision of a row.

In Table 1, we present the total storage cost and bandwidth requirement of each described
mixed-precision split in bytes. Compared to the prior art, the row-wise split saves 4M bytes
as the total number of rows stays constant. Row-wise composite has the cost of storing FP32

and FP64 CSR matrices together (with common row and column pointers) will cost 4M+16V+4

bytes. The bandwidth requirements of row-wise split and row-wise composite are equivalent for
mixed-precision SpMV, and they save 4M compared to the prior art.

We extend our mixed-precision approach for the ELLPACK-R10 format. The value and column
index arrays have a size equal to number of nonzeros in CSR, but here the size is M×R, where
M is the row count and R is the maximum number of nonzeros in a row. This enables to index a
row i just with R×i. The row pointers in CSR become row lengths for ELLPACK-R, where index
i is the number of nonzeros in row i. Consequently, the SpMV kernels are almost identical.

Provided that the number of nonzeros per row does not vary dramatically throughout the
matrix, ELLPACK-R provides better memory coalescing and is more efficient than CSR format.

9Loe et al., “Experimental Evaluation of Multiprecision Strategies for GMRES on GPUs”.
10F. Vázquez, J. J. Fernández, and E. M. Garzón. “A New Approach for Sparse Matrix Vector Product on NVIDIA

GPUs”. Concurr. Comput. 23.8 (2011), pp. 815–826. issn: 1532-0626.
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Table 1 Memory Capacity and Bandwidth Requirements.

Storage Format Storage Cost (Bytes)∗ Bandwidth Requirement (Bytes)†

CSR FP64 4M+12V+4 −
CSR FP32 4M+8V+4 −
Prior Art 8M+8V+4V

64
+8 8M+8V+4V

64
+8

Row-wise Split 4M+8V+4V
64
+12 4M+8V+4V

64
+12

Row-wise Composite 4M+16V+8 4M+8V+4V
64
+12

∗ M: #rows, V : #nonzeros, V64: #nonzeros stored in FP64. † bandwidth required by the kernel

However, if a row has a lot more nonzeros compared to the others, this becomes memory-
consuming. The splitting methodology is analogous to what is done for CSR format, the rows are
treated the same way and two new ELLPACK-R matrices are created from the split.

2.3 case study: jacobi method

Jacobi is a well-known iterative method that can be used to solve linear systems,11 and is most
widely used as a preconditioner within other iterative solvers (e.g., Krylov subspace methods) for
faster convergence.12 Using Jacobi as a preconditioner is appealing since its structure it allows
utilizing high levels of parallelism in contrast to its counterparts such as ILU and SSOR.13 The
method aims to obtain an approximate solution for a linear system of equations Ax= b where
A ∈RN×N is a sparse nonsingular matrix. Considering A is decomposed as A =D+R where
D is the diagonal component and R consists of the remaining off-diagonal entries, it iteratively
solves x(k+1)=D−1(b−Rx(k)) where x(k) is the solution at the kth iteration. The SpMV operation
in Jacobi (Rx(k)) is required at each iteration, dominates the runtime, and constitutes the main
bottleneck. We propose to utilize the mixed-precision SpMV to obtain a mixed-precision Jacobi
method which is faster than the conventional FP64 Jacobi while attaining a decent accuracy.

The pseudocode of the proposed mixed-precision Jacobi method is given in Algorithm 1. Here
x64 and x32 represent the solution vector x stored in FP64 and FP32, respectively. The R matrix is
split as R32+R64, where R32 and R64 contain the nonzeros which are selected to be stored in FP32

and FP64, respectively. In Line 3, the mixed-precision SpMV is performed. In practice, instead of
storing D as an N×N matrix, the diagonal array of D is stored in a vector d (in FP64).

We implement a single CUDA kernel for the Jacobi iteration and solution updates (lines 4,
5) where thread i computes (b[i]−x̄[i])/d[i] and stores it to register. It then writes this to x64[i]
and x32[i], while casting the value to float for the latter. Although there is a slight overhead of
updating the FP32 solution in addition to FP64 solution, the speedup gained from using mixed-
precision SpMV is expected to amortize it. All computations take place on the GPU and there is
no extra cost of transferring the solution vectors back and forth to the host. As described in the
row-wise split and row-wise composite methods, the rows of the coefficient matrix are permuted
prior to the computations. In the Jacobi method, the columns are further permuted in the same
order with rows, i.e. a symmetric permutation is applied to make the diagonal values remain on

11Phanisri P Pratapa, Phanish Suryanarayana, and John E Pask. “Anderson acceleration of the Jacobi iterative
method: An efficient alternative to Krylov methods for large, sparse linear systems”. J. Comput. Physics 306 (2016),
pp. 43–54; Ananda D Gunawardena, SK Jain, and Larry Snyder. “Modified iterative methods for consistent linear
systems”. Linear Algebra Appl. 154 (1991), pp. 123–143.

12Eli Turkel. “Preconditioning techniques in computational fluid dynamics”. Annu. Rev. Fluid Mech. 31.1 (1999),
pp. 385–416; SH Chan, KK Phoon, and FH Lee. “A modified Jacobi preconditioner for solving ill-conditioned Biot’s
consolidation equations using symmetric quasi-minimal residual method”. Int. J. Numer. Anal. Methods. Geomech.
25.10 (2001), pp. 1001–1025; F-H Lee et al. “Performance of Jacobi preconditioning in Krylov subspace solution of finite
element equations”. Int. J. Numer. Anal. Methods. Geomech. 26.4 (2002), pp. 341–372.

13Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.
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Require: Diagonal (D) and remaining (R) components
with splitting R=R32+R

64

1: Choose an initial guess x(0)

2: for k = 1, 2, ..., ITERS do
3: x̄← R

64
× x

(k−1)
64

+ R32 × x
(k−1)
32

4: x̄← D−1(b− x̄)

5: x
(k)
64
← x̄, ;

x
(k)
32 ←float(x̄)

6: end for
Algorithm 1: Mixed-Precision Jacobi Method

Require: Diagonal (D) and remaining (R) components
with splitting R=R32+R

64

1: Initial guess x(0) read from disk.
2: for k = 1, 2, ..., ITERS do
3: x̄← R

64
× x

(k−1)
64

+ R32 × x
(k−1)
32

4: x̄← x̄+ x̄⊙D

5: x
(k)
64
← x̄, ;

x
(k)
32 ←float(x̄)

6: end for
Algorithm 2: Mixed-Precision Cardiac Modeling

the diagonal after reordering.
Different multi-precision implementations are possible for the Jacobi method. In a 1-step

method, only the mixed-precision Jacobi is used. In a 2-step Jacobi method, it starts with mixed-
precision and moves to FP64 after a number of iterations. Similarly, in a 3-step method, a number
of iterations are done in FP32, then the method is upgraded to use mixed-precision, and the final
set of iterations are done in FP64.

2.4 case study: cardiac modeling

In cardiac modeling, diffusion equations with finite volumes are used, where the computations
for a single time-step can be shown as a matrix multiplication operation x(i)=A×x(i−1).14 The
mixed precision SpMV is utilized in a similar fashion to the Jacobi, where a solution time-step
becomes x̄ =A64×x

(i)
64

+A32×x(i)32 . We then update both x
(i)
64

and x
(i)
32 solution vectors by assigning

x̄. Generally, the solution update could be made just by pointer swapping; however, when we
have two solution vectors to be updated, swapping alone does not suffice. Instead, an additional
copy kernel that is issued after the SpMV must update both solutions. We have also observed
that the diagonal values in this dataset are much larger than off-diagonals. Our absolute mean
based range-selection method would therefore end up with a large range that covers most of, if
not all, the off-diagonal values; the only diagonal value which is outside the range in that row
would be tolerated by the 1% margin. Consequently the whole matrix would likely be stored in
FP32.

Considering both the large diagonals, and the need of an extra copy kernel to update solution
vectors, we extract the diagonal values and store them in an array; whereas the off-diagonal
values are kept in the matrix. After SpMV, the copy kernel adds the product of solution vector
and diagonal values at their respective rows, and assigns the result to both FP64 and FP32 solution
vectors as described in Algorithm 2. By utilizing the row-wise composite method, we also propose
multi-precision Cardiac modeling methods 1-step, 2-step and 3-step similar to the way that we
construct in multi-precision Jacobi.

3 evaluation

3.1 spmv results

For SpMV, we consider y←y+Ax where the initial y is all zeros, and the x entries are (uniformly)
random in the range (−5, 5). The experiments are conducted on real-valued matrices from the

14Langguth et al., “Scalable Heterogeneous CPU-GPU Computations for Unstructured Tetrahedral Meshes”.

SparCity 7



1.0 1.1 1.2 1.3
SpMV Speedup relative to the best

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 te
st

 in
st

an
ce

s

baseline
row-wise split
row-wise composite

(a) CSR

1.0 1.1 1.2 1.3
SpMV Speedup relative to the best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 te

st
 in

st
an

ce
s

baseline
row-wise split
row-wise composite

(b) ELLPACK-R

Figure 5 SpMV Speedup performance profiles

SuiteSparse Collection,15 where the matrices have between 100K and 40M nonzeros. The range
value of the baseline method is r=1, as in Ref..16 For reliable measurements, we filter out matrices
whose FP64 SpMV runtime is less than 0.1 seconds. We also ignore the matrices where the row-
wise split stores less than 10% of nonzeros in FP32, as the speedup will not be considerable. As
such, we have used 105 matrices (out of 2,794).

Fig. 5a shows the performance profiles comparing different methods in terms of the relative
speedup of SpMV CSR with respect to FP64 for 105 matrices. A performance profile17 represents
the comparison of different methods for each data instance relative to the best-performing one. A
point (α,β) on the line associated to method X means that the performance of X is within α factor
of the best result for a fraction β of the instances. For example, the point (1.30, 0.75) on the curve
of method X means that X yields 30% better result than the best result achieved for 75% of the
dataset. Therefore, the method closest to the top left corner is interpreted as the best-performing
one.

As shown in Fig. 5a, our proposed row-wise split and row-wise composite methods are
performing the best. Due to their close performance, further SpMV experiments are conducted
with the row-wise split method. Fig. 6 shows the plot for relative residuals of SpMV with respect
to FP64 for the same 105 matrices sorted in the order of the baseline method’s residuals. Here,
we refer the relative residual as ∥y ′−y64∥/∥y64∥ where y64 is the result of FP64 SpMV, and y ′ is
the result of mixed-precision SpMV. FP32 SpMV with FP64 reduction serves as the upper bound
of relative residual, which is incurred by storing all nonzeros in FP32.

With its small fixed range (−1, 1), the baseline often has small relative residuals. Nevertheless,
there are numerous instances where the row-wise split yields near or lesser residual compared
to the baseline. Considering the greater speedup of the proposed method and the possibility
of correcting errors with a more precise iteration that follows the mixed-precision steps, our
residuals to be acceptable.

For the chosen 105 matrices, ELLPACK-R goes out-of-memory for 15 of them, as ELLPACK-R
stores a dense matrix of size M× R for a matrix with M rows and maximum of R elements in a

15Timothy A. Davis and Yifan Hu. “The University of Florida Sparse Matrix Collection”. ACM Trans. Math. Softw.
38.1 (2011). issn: 0098-3500.

16Ahmad, Sundar, and Hall, “Data-Driven Mixed Precision Sparse Matrix Vector Multiplication for GPUs”.
17Elizabeth D Dolan and Jorge J Moré. “Benchmarking optimization software with performance profiles”. Math.

Prog. 91.2 (2002), pp. 201–213.
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Figure 6 SpMV CSR Relative Residuals

Table 2 Average speedup and relative residuals with respect to the FP64 SpMV.

density (λ)
in 10,000 *

matrix
count

avg. speedup w.r.t. FP64 avg. relative residual w.r.t. FP64

FP32
† baseline row-split§ FP32

† baseline row-split§

λ <0.5 26 1.14 0.97 1.03 3.90e-08 8.31e-12 1.03e-09

0.5 <λ <1 16 1.13 1.02 1.06 3.68e-08 7.22e-12 6.53e-10

1 <λ <2.5 17 1.11 0.95 1.05 4.14e-08 8.79e-12 1.52e-11

2.5 <λ <5 24 1.13 0.98 1.07 3.30e-08 8.46e-12 6.81e-11

λ >5 22 1.26 1.10 1.11 4.49e-08 7.37e-12 4.19e-11

ALL 105 1.16 1.00 1.06 3.87e-08 8.04e-12 1.33e-10

* density λ = NNZ/(M×N)×10,000. † FP32 SpMV with FP64 sum reduction. § row-wise split.

row. If a row has many elements, but the rest are a lot sparser, this format becomes inefficient. The
speedup results for the remaining 90 matrices are given in Fig. 5b. We omit ELLPACK-R relative
residuals as they are invariant to the storage format and they are similar to what is observed with
CSR. Moreover, the average and maximum speedup for ELLPACK-R is higher than that of CSR,
with 1.07x and 1.74x respectively. Note that FP32 with double sum-reduction serves as an upper
bound for speedup with average 1.16× and 1.13× for CSR and ELLPACK-R respectively.

In Table 2, we present the (geometric) average speedup and relative residuals grouped into
five different matrix density categories of 105 matrices. For the row-wise split method, a density-
speedup correlation is observed. Though its reason is not immediately obvious, the sparser
matrices may have lower speedups as the irregular access to the dense vector becomes more
pronounced. Note that the access pattern is not within the scope of mixed-precision SpMV nor
our row permutations. FP32 with double sum reduction, serving as an upper bound of speedup
and relative residual for each group, achieves up to 26% improvement with 16% on average. The
table also shows that the baseline has no or insignificant speedup. We have also experimented on
2,794 real-valued matrices from SuiteSparse on which the experiments of Ref.18 are conducted,
and from these, in 999 matrices, row-wise split has speedup ⩾ 1; whereas this number is 354 for
the baseline method, contrary to the findings in Ref..19

18Ahmad, Sundar, and Hall, “Data-Driven Mixed Precision Sparse Matrix Vector Multiplication for GPUs”.
19Ibid.

SparCity 9



torsion1
minsurfo trans5

language
ASIC_320ks

para-4 ohne2
circuit5M_dc

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Sp
ee

du
p 

w.
r.t

 F
P6

4 
Ja

co
bi

baseline
1-step
2-step
3-step

Figure 7 Speedups for Jacobi method

3.2 jacobi method results

We consider large real-valued sparse square matrices with no zero values in the diagonal. We
applied HSL MC64

20 permutation and scaling for diagonal-dominance, which is a sufficient
condition for Jacobi convergence.21 Permuting aims to maximize the product of the diagonal
entries, and scaling aims to make the absolute value of diagonal entries 1 and the others not larger
than 1. We use r=0.01 as a range for the baseline method (Jacobi using SpMV with entry-wise
split) since otherwise our method would choose everything in FP32 after scaling.

We set the desired solution vector as x∗← [1N, 2N, . . . , 1]T to find y←Ax∗ with FP64 SpMV.
We set the initial guess as x← [0,0,. . . ,0]T and solve Ax=y using Jacobi. Since Jacobi is often used
as a preconditioner, and to provide an explicit accuracy comparison, we run Jacobi for a fixed
number (2,000) of iterations. The iterations are divided equally among the steps in multi-precision
runs. The relative residual is calculated as ∥y−Ax ′∥/∥y∥ where x ′ is the computed solution. The
comparison experiments are conducted on 8 matrices whose relative residual for FP64 Jacobi after
2000 iterations is less than 10

−1.
Fig. 7 shows the speedups of baseline and our methods compared to the FP64 Jacobi. In

all cases, 3-step multi-precision Jacobi is the fastest (avg. 5% and up to 11% speedup) due to
the performance gains from the lower precision steps. 2-step method also has speedup, but for
some cases less than 1-step; possibly due to the additional cost of updating the FP32 copy of the
solution vector, and low number of FP32 values used in split. For all cases, baseline is the slowest
except for ohne, where the baseline keeps considerably high number of FP32 values.

Table 3 shows the relative residuals for FP64 and FP32 Jacobi, the baseline, and our methods.
The residual is affected by the precision selection, but not from the split that comes afterward,
since the split itself does not change the accuracy of the computations. Although the 1-step
method has relative residuals higher than that of FP64, the ones of 2-step and 3-step are close to
FP64 since they can tolerate the accumulated errors in the prior less-precise steps, as expected.
This is in line with our expectations that lower precision steps can be corrected by the following
higher precision steps.

20HSL. A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk/.
21Roberto Bagnara. “A unified proof for the convergence of Jacobi and Gauss–Seidel methods”. SIAM Review 37.1

(1995), pp. 93–97.
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Figure 8 Speedups for Cardiac modeling

Table 3 Relative residuals of Jacobi method after 2,000 iterations.

matrix FP64 FP32* baseline 1-step 2-step 3-step

torsion1 1.49e-16 1.24e-07 1.49e-16 1.38e-08 1.58e-16 1.58e-16

minsurfo 1.19e-16 1.97e-07 1.40e-10 5.33e-09 2.27e-16 2.44e-16

trans5 1.07e-05 1.06e-05 1.07e-05 1.07e-05 1.07e-05 1.07e-05

language 7.14e-18 1.04e-08 1.59e-11 7.28e-09 7.16e-18 7.15e-18

ASIC 320ks 4.89e-07 4.89e-07 4.89e-07 4.89e-07 4.89e-07 4.89e-07

para-4 7.68e-02 7.68e-02 7.68e-02 7.68e-02 7.68e-02 7.68e-02

ohne2 2.12e-02 2.12e-02 2.12e-02 2.12e-02 2.12e-02 2.12e-02

circuit5M dc 6.01e-17 3.25e-08 5.36e-11 6.34e-09 6.39e-17 6.68e-17

* FP32 Jacobi refers to Jacobi using FP32 SpMV with FP64 reduction.
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Figure 9 Cardiac Speedups with respect to FP64 Cardiac method

3.3 cardiac modeling results

We use a set of 6 generated meshes (matrices) from Ref.22 each having larger than 100K nonzeros
and an initial dense solution vector. The ground-truth FP64 Cardiac modeling does not extract
the diagonal, and uses pointer swapping to update the solution. Each method runs for 8,000

iterations. All off-diagonals for this dataset are less than 1, so again the baseline range r= 1 is
infeasible, instead we use r=1e−5, which is close to the absolute mean value for all 6 matrices.

22Hector Martinez-Navarro et al. Repository for modelling acute myocardial ischemia: simulation scripts and torso-heart
mesh, University of Oxford. 2019.
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Figure 9 shows the speedups of baseline and our methods with respect to the FP64 Cardiac
modeling for 6 matrices sorted in increasing order of number of nonzeros. Despite the extra copy
kernel overhead, 1-step achieves an average of 1.11× and up to 1.40× speedup, while also being
faster than 2-step and 3-step. This indicates that FP64 steps are slow enough to affect the entire
execution time. The speedup increases with the number of nonzeros, which may be due to better
cache utilization of lower precision. The relative residuals are computed similar to the SpMV
case, and are found to be not much different among methods (unlike Jacobi), thus are omitted for
brevity.
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4 conclusions

Deliverable 2.2 focused on presenting the main contributions SparCity has made in terms of
mixed precision support in sparse computations. Our main contributions are:

• We propose an easy mixed-precision method for SpMV and its CSR and ELLPACK-R based
storage formats and GPU kernels.

• For a multi-precision setting where FP32 and FP64 matrices are stored in advance, we
further extend the row-wise mixed-precision SpMV and implement a multi-precision Jacobi
pre-conditioner and Cardiac modeling as use-cases.

• Over a dataset of 105 real-valued large matrices from SuiteSparse, for the CSR format,
we demonstrate an average 1.06× and up to 1.49× speedup over FP64 SpMV, while the
prior-art23 achieves no speedup. FP32 SpMV with FP64 sum-reduction achieves an average
speedup of 1.16×, which serves as an upper bound for the achievable speedup.

• For ELLPACK-R, we achieve an average 1.07× and up to 1.74× speedup, which is again
very close to the upper bound of FP32 SpMV (with FP64 sum-reduction) with an average
speedup of 1.13×.

• We demonstrate that multi-precision Jacobi is faster than, yet as accurate as, the FP64 Jacobi
method. We achieve an average 1.05× and 1.11× and up to 1.11× and 1.40× speedup for
Jacobi and Cardiac modeling, respectively.

Our methodology is based on CSR format; nevertheless, we demonstrate its effectiveness
with ELLPACK-R, and we further believe that the same methodology will work on various other
formats (e.g., CSC, DIA). Since FP16 (half-precision) is increasingly becoming prevalent among
HPC and ML, it is a clear direction of future work to extend our methodology to accommodate
lower- precisions. A further AMD-GPU extension of this work, although an orthogonal direction
of optimization, is certainly possible. Scenarios where each GPU works on a different precision, or
where the split matrices are further split to fit into multiple GPUs are of consideration; however,
effort must go into load-balancing the work among them.

23Ahmad, Sundar, and Hall, “Data-Driven Mixed Precision Sparse Matrix Vector Multiplication for GPUs”.
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